十大算法排序总结
-
排序算法的总结:
#基础排序
a.冒泡
谁大谁上,每一轮都把最大的顶到天花板
效率太低O(n²)——掌握swap
b.选择排序,效率较低,但经常用它内部的循环方式来找最大值和最小值——怎么一次性求出数组的最大值和最小值
O(n²)
c.插排,虽然平均效率低,但是在序列基本有序时,它很快,所以也有其适用范围
Arrays这个工具类在1.7里面做了较大改动
d.希尔(缩小增量排序),是插排的改良,对空间思维训练有帮助
#分治法
1.子问题拆分
2.递归求解子问题
3.合并子问题的解
e.快排是软件工业中最常见的常规排序法,其双向指针扫描和分区算法是核心,
往往用于解决类似问题,特别地partition算法用来划分不同性质的元素,
partition->selectK,也用于著名的top问题
O(NlgN),但是如果主元不是中位数的话,特别地如果每次主元都在数组区间的一侧,复杂度将退化为N²
工业优化:三点取中法,绝对中值法,小数据量用插入排序
快排重视子问题拆分
f.归并排序,空间换时间——逆序对数
归并重视子问题的解的合并
g.堆排序,用到了二叉堆数据结构,是继续掌握树结构的起手式
=插排+二分查找
上面三个都是NlgN的复杂度,其中快排表现最好,是原址的不用开辟辅助空间;堆排也是原址的,但是常数因子较大,不具备优势。
上面7种都是基于比较的排序,可证明它们在元素随机顺序情况下最好是NlgN的,用决策树证明
下面三个是非比较排序,在特定情况下会比基于比较的排序要快:
1.计数排序,可以说是最快的:O(N+k),k=maxOf(sourceArr),
用它来解决问题时必须注意如果序列中的值分布非常广(最大值很大,元素分布很稀疏),
空间将会浪费很多
所以计数排序的适用范围是:序列的关键字比较集中,已知边界,且边界较小
2.桶排序:先分桶,再用其他排序方法对桶内元素排序,按桶的编号依次检出。(分配-收集)
用它解决问题必须注意序列的值是否均匀地分布在桶中。
如果不均匀,那么个别桶中的元素会远多于其他桶,桶内排序用比较排序,极端情况下,全部元素在一个桶内
还是会退化成NlgN
其时间复杂度是:时间复杂度: O(N+C),其中C=N*(logN-logM),约等于N*lgN
N是元素个数,M是桶的个数。
3.基数排序,kN级别(k是最大数的位数)是整数数值型排序里面又快又稳的,无论元素分布如何,
只开辟固定的辅助空间(10个桶)
对比桶排序,基数排序每次需要的桶的数量并不多。而且基数排序几乎不需要任何“比较”操作,而桶排序在桶相对较少的情况下,
桶内多个数据必须进行基于比较操作的排序。
因此,在实际应用中,对十进制整数来说,基数排序更好用。