kmeans: 缺点: 对初始值的选取敏感, 使用bikmean可以解决。 完整代码参考博客:http://blog.csdn.net/zouxy09/article/details/17590137 kmeans算法分析: 1、初始化聚类中心
def initCentroids(dataSet, k):
numSamples, dim = dataSet.shape
centroids = zeros((k, dim))
for i in range(k):
index = int(random.uniform(0, numSamples))
centroids[i, :] = dataSet[index, :]
return centroids
循环: 如果未迭代:即clusterChanged = True 1、计算各点到聚类中心的距离, 选择最近的距离, 更新clusterAssent:第一列存放该样本所在簇的类标,第二列存储该样本到对应簇中心的距离。判断是否迭代,更新 clusterChanged 。
while clusterChanged:
clusterChanged = False
## for each sample
for i in range(numSamples):
minDist = 100000.0
minIndex = 0
## for each centroid
## step 2: find the centroid who is closest
for j in range(k):
distance = euclDistance(centroids[j, :], dataSet[i, :])
if distance < minDist:
minDist = distance
minIndex = j #距离最小的聚类中心类标
## step 3: update its cluster
if clusterAssment[i, 0] != minIndex:
clusterChanged = True
clusterAssment[i, :] = minIndex, minDist ** 2
2、更新聚类中心
for j in range(k):
pointsInCluster = dataSet[nonzero(clusterAssment[:, 0].A == j)[0]]
centroids[j, :] = mean(pointsInCluster, axis=0)