kmeans: 缺點: 對初始值的選取敏感, 使用bikmean可以解決。 完整代碼參考部落格:http://blog.csdn.net/zouxy09/article/details/17590137 kmeans算法分析: 1、初始化聚類中心
def initCentroids(dataSet, k):
numSamples, dim = dataSet.shape
centroids = zeros((k, dim))
for i in range(k):
index = int(random.uniform(0, numSamples))
centroids[i, :] = dataSet[index, :]
return centroids
循環: 如果未疊代:即clusterChanged = True 1、計算各點到聚類中心的距離, 選擇最近的距離, 更新clusterAssent:第一列存放該樣本所在簇的類标,第二列存儲該樣本到對應簇中心的距離。判斷是否疊代,更新 clusterChanged 。
while clusterChanged:
clusterChanged = False
## for each sample
for i in range(numSamples):
minDist = 100000.0
minIndex = 0
## for each centroid
## step 2: find the centroid who is closest
for j in range(k):
distance = euclDistance(centroids[j, :], dataSet[i, :])
if distance < minDist:
minDist = distance
minIndex = j #距離最小的聚類中心類标
## step 3: update its cluster
if clusterAssment[i, 0] != minIndex:
clusterChanged = True
clusterAssment[i, :] = minIndex, minDist ** 2
2、更新聚類中心
for j in range(k):
pointsInCluster = dataSet[nonzero(clusterAssment[:, 0].A == j)[0]]
centroids[j, :] = mean(pointsInCluster, axis=0)