天天看點

kmeans代碼分析

kmeans:  缺點: 對初始值的選取敏感, 使用bikmean可以解決。 完整代碼參考部落格:http://blog.csdn.net/zouxy09/article/details/17590137 kmeans算法分析: 1、初始化聚類中心

def initCentroids(dataSet, k):
    numSamples, dim = dataSet.shape
    centroids = zeros((k, dim))
    for i in range(k):
        index = int(random.uniform(0, numSamples))
        centroids[i, :] = dataSet[index, :]
    return centroids
      

循環: 如果未疊代:即clusterChanged = True 1、計算各點到聚類中心的距離, 選擇最近的距離, 更新clusterAssent:第一列存放該樣本所在簇的類标,第二列存儲該樣本到對應簇中心的距離。判斷是否疊代,更新 clusterChanged 。

while clusterChanged:
    clusterChanged = False
    ## for each sample
    for i in range(numSamples):
        minDist = 100000.0
        minIndex = 0
        ## for each centroid
        ## step 2: find the centroid who is closest
        for j in range(k):
            distance = euclDistance(centroids[j, :], dataSet[i, :])
            if distance < minDist:
                minDist = distance
                minIndex = j  #距離最小的聚類中心類标

                ## step 3: update its cluster
        if clusterAssment[i, 0] != minIndex:
            clusterChanged = True
            clusterAssment[i, :] = minIndex, minDist ** 2      

2、更新聚類中心

for j in range(k):
    pointsInCluster = dataSet[nonzero(clusterAssment[:, 0].A == j)[0]]
    centroids[j, :] = mean(pointsInCluster, axis=0)      
上一篇: JM代碼分析
下一篇: 關于YUV420