天天看点

Android handler 消息机制源码解读

用过 okhttp 网络请求框架的人都知道,okhttp 的 callback 接口不在主线程。因此要想在 callback 中进行 UI上更新需要切换到主线程,可以handler.post(runable),那么,handler 是怎么直接就切换到主线程的呢?handler 是怎么处理线程之间的消息传递呢?

本文主要解决的几个问题

  1. handler 是怎样传递消息的?
  2. handler.post(runable) 方法是怎么直接切换到主线程的?
  3. Handler,Looper,MessageQueue,Message 有什么关系?

相关类介绍

Message 消息对象

public int what;

    public int arg1; 

    public int arg2;

    public Object obj;

    public Messenger replyTo;

    private static final Object sPoolSync = new Object();
    private static Message sPool;
    private static int sPoolSize = 0;

    private static final int MAX_POOL_SIZE = 50;

    private static boolean gCheckRecycle = true;

           

这是Message的一些属性,创建一个消息实例一般有两种:

// 第一种,直接新建一个对象
Message msg = new Message();
// 第二种,通过Message 的静态方法获取一个对象
Message msg = Message.obtain();
Message msg = Message.obtain((Message orig);
Message msg = Message.obtain(Handler h);
Message msg = Message.obtain(Handler h, Runnable callback);
Message msg = Message.obtain(Handler h, int what);
Message msg = Message.obtain(Handler h, int what, Object obj);
Message msg = Message.obtain(Handler h, int what, int arg1, int arg2);
Message msg = Message.obtain(Handler h, int what,  int arg1, int arg2, Object obj);
           

这里推荐用第二种。那么两种方式有什么不一样吗?Message.obtain(…)方法最终都是调用的是Message.obtain(),所以我们看一下 obtain() 的源码。

/**
     * Return a new Message instance from the global pool. Allows us to
     * avoid allocating new objects in many cases.
     */
    public static Message obtain() {
        synchronized (sPoolSync) {
            if (sPool != null) {
                Message m = sPool;
                sPool = m.next;
                m.next = null;
                m.flags = 0; // clear in-use flag
                sPoolSize--;
                return m;
            }
        }
        return new Message();
    }
           

先看注释:从全局池中返回一个新的消息对象,允许我们在很多情况下避免分配新的对象。其实就是复用以前用过的对象,亦可以看出Message是一个链表结构,如果 sPool 为空就新建一个,反之就从链表中取。注意到 sPoolSize 减一,那么最多可以获取多少个Message实例呢?Message 有一个属性 MAX_POOL_SIZE ,值为50,这个属性中在回收Message时被用到。

/**
     * Recycles a Message that may be in-use.
     * Used internally by the MessageQueue and Looper when disposing of queued Messages.
     */
    void recycleUnchecked() {
       ...
        synchronized (sPoolSync) {
            if (sPoolSize < MAX_POOL_SIZE) {
                next = sPool;
                sPool = this;
                sPoolSize++;
            }
        }
    }
           

如果此时消息池中的可用message数量小于MAX_POOL_SIZE,则该message加入链表尾部,同时可用数量加一,否则舍弃。所以最多可获取50个Message实例。

Handler 消息处理类

消息实体类有了,发送消息就简单了,大概分为两种,一种handler.postXXX(Runable, xxx),一种handler.sendMessageXXX(message);

// 一种 post
	public final boolean post(Runnable r) {
       return  sendMessageDelayed(getPostMessage(r), 0);
    }

    public final boolean postAtTime(Runnable r, long uptimeMillis){
        return sendMessageAtTime(getPostMessage(r), uptimeMillis);
    }

    public final boolean postAtTime(Runnable r, Object token, long uptimeMillis) {
        return sendMessageAtTime(getPostMessage(r, token), uptimeMillis);
    }

    public final boolean postDelayed(Runnable r, long delayMillis){
        return sendMessageDelayed(getPostMessage(r), delayMillis);
    }
    
    public final boolean postAtFrontOfQueue(Runnable r) {
        return sendMessageAtFrontOfQueue(getPostMessage(r));
    }

	// 一种sendMessage
	public final boolean sendMessage(Message msg)  {
        return sendMessageDelayed(msg, 0);
    }
    public final boolean sendEmptyMessage(int what){
        return sendEmptyMessageDelayed(what, 0);
    }

    public final boolean sendEmptyMessageDelayed(int what, long delayMillis) {
        Message msg = Message.obtain();
        msg.what = what;
        return sendMessageDelayed(msg, delayMillis);
    }

    public final boolean sendEmptyMessageAtTime(int what, long uptimeMillis) {
        Message msg = Message.obtain();
        msg.what = what;
        return sendMessageAtTime(msg, uptimeMillis);
    }

    public final boolean sendMessageDelayed(Message msg, long delayMillis){
        if (delayMillis < 0) {
            delayMillis = 0;
        }
        return sendMessageAtTime(msg, SystemClock.uptimeMillis() + delayMillis);
    }

    public boolean sendMessageAtTime(Message msg, long uptimeMillis) {
        MessageQueue queue = mQueue;
        if (queue == null) {
            RuntimeException e = new RuntimeException(
                    this + " sendMessageAtTime() called with no mQueue");
            Log.w("Looper", e.getMessage(), e);
            return false;
        }
        return enqueueMessage(queue, msg, uptimeMillis);
    }

    public final boolean sendMessageAtFrontOfQueue(Message msg) {
        MessageQueue queue = mQueue;
        if (queue == null) {
            RuntimeException e = new RuntimeException(
                this + " sendMessageAtTime() called with no mQueue");
            Log.w("Looper", e.getMessage(), e);
            return false;
        }
        return enqueueMessage(queue, msg, 0);
    }


           

其实调到最后也是一种而已,因为 post 类最后也是把参数转为Message,然后调用sendMessage()方法的,看源码由 getPostMessage(Runable)这个方法。

private static Message getPostMessage(Runnable r) {
        Message m = Message.obtain();
        m.callback = r;
        return m;
    }
           

而 sendMessageXXX()方法最后会调用 enqueueMessage 方法,所以我们重点看一下这个方法。

private boolean enqueueMessage(MessageQueue queue, Message msg, long uptimeMillis) {
        msg.target = this;
        if (mAsynchronous) {
            msg.setAsynchronous(true);
        }
        return queue.enqueueMessage(msg, uptimeMillis);
    }
           

可以看出 msg.target 是个 handler 类型的对象,把当前 handler 赋值给它。最后调用 queue.enqueueMessage 方法。quene 是一个MessageQueue 类型的对象。MessageQueue,顾名思义就是消息队列,我们通过 handler 发送的消息都会被放到这样的一个队列里面。我们继续看 enqueueMessage 的源码。

boolean enqueueMessage(Message msg, long when) {
        if (msg.target == null) {
            throw new IllegalArgumentException("Message must have a target.");
        }
        if (msg.isInUse()) {
            throw new IllegalStateException(msg + " This message is already in use.");
        }

        synchronized (this) {
            if (mQuitting) {
                IllegalStateException e = new IllegalStateException(
                        msg.target + " sending message to a Handler on a dead thread");
                Log.w(TAG, e.getMessage(), e);
                msg.recycle();
                return false;
            }

            msg.markInUse();
            msg.when = when;
            Message p = mMessages;
            boolean needWake;
            // 如果这是第一个消息,或者这个消息需要马上执行,或者这个消息要比之前的消息先执行
            if (p == null || when == 0 || when < p.when) {
                // New head, wake up the event queue if blocked.
                // 把这个消息放在最前面
                msg.next = p;
                mMessages = msg;
                needWake = mBlocked;
            } else {
                // Inserted within the middle of the queue.  Usually we don't have to wake
                // up the event queue unless there is a barrier at the head of the queue
                // and the message is the earliest asynchronous message in the queue.
                needWake = mBlocked && p.target == null && msg.isAsynchronous();
                Message prev;
                for (;;) {
                    prev = p;
                    p = p.next;
                    if (p == null || when < p.when) {
                        break;
                    }
                    if (needWake && p.isAsynchronous()) {
                        needWake = false;
                    }
                }
                msg.next = p; // invariant: p == prev.next
                prev.next = msg;
            }

            // We can assume mPtr != 0 because mQuitting is false.
            if (needWake) {
                nativeWake(mPtr);
            }
        }
        return true;
    }

           

前面做一些状态判断,不符合就抛出异常。后面把 mMessages 赋值给 p。前面我们说过,Message 其实是一个链表结构。这里后面的两个if - else 里面就是把发来的消息按延迟的时间排序。 if 里面的条件 (p == null || when == 0 || when < p.when),如果这是第一个消息,或者这个消息需要马上执行,或者发来的消息要比队列里第一个消息先执行,那么把这个消息放在链表的第一个位置(原来是msg ,p,变成 msg —> p)。else 里面有一个循环,先把 p 的头部赋值给 prev ,然后 p.next 赋值给 p ,如果 p 为空或者当前消息比 p 先执行,那么就跳出循环。此时的 p 是执行时间比 msg 要晚,而prev 又比当前 msg 执行时间早。然后做一个链表的插入操作。插入前顺序为prev---->p,插入后顺序为 prev ----> msg ----> p。

发来的消息顺序也排好了,那么什么时候去处理消息呢?我们使用 handler 的时候一般会这样使用:

private Handler mHandler = new Handler() {
        @Override
        public void handleMessage(Message msg) {
            super.handleMessage(msg);
            if (msg.what == 1) {
                Toast.makeText(MainActivity.this, "刷新UI", Toast.LENGTH_SHORT).show();
            }
        }
    };
           

重写 handlerMessage 方法,去实现自己的操作。那么什么时候调用的这个方法呢?从 handler 类中有一个dispatchMessage的方法。

/**
     * Handle system messages here.
     */
    public void dispatchMessage(Message msg) {
        if (msg.callback != null) {
            handleCallback(msg);
        } else {
            if (mCallback != null) {
                if (mCallback.handleMessage(msg)) {
                    return;
                }
            }
            handleMessage(msg);
        }
    }
           

这个方法里面最后调用了 handlerMessage 方法。又是谁调用这个方法呢?handler 类中并没有什么地方调用,一顿搜索之后,发现是 Looper 里面的 loop() 方法调用了该方法。但是我们平时使用handler 的时候并没有接触到这个类,是什么地方使用的呢?这里就要看 handler 的构造函数了。

public Handler() {
        this(null, false);
    }

    public Handler(Callback callback) {
        this(callback, false);
    }

    public Handler(Looper looper) {
        this(looper, null, false);
    }

    public Handler(Looper looper, Callback callback) {
        this(looper, callback, false);
    }

    public Handler(boolean async) {
        this(null, async);
    }

    public Handler(Callback callback, boolean async) {
        if (FIND_POTENTIAL_LEAKS) {
            final Class<? extends Handler> klass = getClass();
            if ((klass.isAnonymousClass() || klass.isMemberClass() || klass.isLocalClass()) &&
                    (klass.getModifiers() & Modifier.STATIC) == 0) {
                Log.w(TAG, "The following Handler class should be static or leaks might occur: " +
                    klass.getCanonicalName());
            }
        }

        mLooper = Looper.myLooper();
        if (mLooper == null) {
            throw new RuntimeException(
                "Can't create handler inside thread that has not called Looper.prepare()");
        }
        mQueue = mLooper.mQueue;
        mCallback = callback;
        mAsynchronous = async;
    }
    
     public Handler(Looper looper, Callback callback, boolean async) {
        mLooper = looper;
        mQueue = looper.mQueue;
        mCallback = callback;
        mAsynchronous = async;
    }
           

大概分为两类,参数传 looper 和不传 looper,最后都是得到一个 Looper 实例。不传 looper 的最后会调用 Looper.myLooper() 去得到一个 looper,同时也得到一个 MessageQueue 。如果 looper 为空就会抛出异常,看这个异常描述是不是很熟悉?如果你在子线程中直接创建一个 handler 就会抛这个异常。为什么在主线程中不会报异常呢?因为主线程启动的时候,系统已经帮我们调用了这个方法,所以就不会报错了。接下来我们看一下 Looper 的 loop() 方法。

/**
     * Run the message queue in this thread. Be sure to call
     * {@link #quit()} to end the loop.
     */
    public static void loop() {
        final Looper me = myLooper();
        if (me == null) {
            throw new RuntimeException("No Looper; Looper.prepare() wasn't called on this thread.");
        }
        final MessageQueue queue = me.mQueue;

        // Make sure the identity of this thread is that of the local process,
        // and keep track of what that identity token actually is.
        Binder.clearCallingIdentity();
        final long ident = Binder.clearCallingIdentity();

        for (;;) {
            Message msg = queue.next(); // might block
            if (msg == null) {
                // No message indicates that the message queue is quitting.
                return;
            }

            // This must be in a local variable, in case a UI event sets the logger
            final Printer logging = me.mLogging;
            if (logging != null) {
                logging.println(">>>>> Dispatching to " + msg.target + " " +
                        msg.callback + ": " + msg.what);
            }

            final long slowDispatchThresholdMs = me.mSlowDispatchThresholdMs;

            final long traceTag = me.mTraceTag;
            if (traceTag != 0 && Trace.isTagEnabled(traceTag)) {
                Trace.traceBegin(traceTag, msg.target.getTraceName(msg));
            }
            final long start = (slowDispatchThresholdMs == 0) ? 0 : SystemClock.uptimeMillis();
            final long end;
            try {
                msg.target.dispatchMessage(msg);
                end = (slowDispatchThresholdMs == 0) ? 0 : SystemClock.uptimeMillis();
            } finally {
                if (traceTag != 0) {
                    Trace.traceEnd(traceTag);
                }
            }
            if (slowDispatchThresholdMs > 0) {
                final long time = end - start;
                if (time > slowDispatchThresholdMs) {
                    Slog.w(TAG, "Dispatch took " + time + "ms on "
                            + Thread.currentThread().getName() + ", h=" +
                            msg.target + " cb=" + msg.callback + " msg=" + msg.what);
                }
            }

            if (logging != null) {
                logging.println("<<<<< Finished to " + msg.target + " " + msg.callback);
            }

            // Make sure that during the course of dispatching the
            // identity of the thread wasn't corrupted.
            final long newIdent = Binder.clearCallingIdentity();
            if (ident != newIdent) {
                Log.wtf(TAG, "Thread identity changed from 0x"
                        + Long.toHexString(ident) + " to 0x"
                        + Long.toHexString(newIdent) + " while dispatching to "
                        + msg.target.getClass().getName() + " "
                        + msg.callback + " what=" + msg.what);
            }

            msg.recycleUnchecked();
        }
    }
           

先看注释:在当前线程运行消息队列,确保使用{@link #quit()} 结束循环。所以如果我们是在主线程中实例化 handler,那么这个消息队列就运行在主线程中了,那么用 handler.post() 就可以直接操作 UI了。

总结

总结一下:

  1. 在创建 handler 的时候,会在 handler 所在的线程中创建一个Looper 对象,同时Looper 也会创建一个 MessageQueue 对象。通过 Looper.loop() 开启一个死循环,从MessageQueue 中不断取出 Message,然后通过 handler 将消息分发传回handler所在的线程。
  2. MessageQueue 名字叫做消息队列,实质上是一个链表结构,传来的消息都按照执行时间进行了排序。

另外,关于 handler 还有很多需要我们注意的地方,具体内容参考下一篇,handler 消息机制需要注意的地方有哪些?