天天看点

内存区域分配方式

1、内存分配方式有三种:

  • 静态存储区分配。内存在程序编译的时候就已经分配好,这块内存在程序的整个运行期间存在。如全局变量,静态变量。
  • 在栈上创建。函数内的局部变量在栈上创建,函数执行结束时系统自动释放。栈内存分配运算内置于处理器的指令集中,效率很高,但分配的内存容量有限。
  • 从堆上分配,亦称动态内存分配。程序在运行的时候用malloc或new申请任意多少的内存,程序员自己负责free或delete释放内存。动态内存的生存期由程序员决定,但如果在堆上分配了内存,注意释放它,否则会出现内存泄漏,频繁地分配和释放不同大小的堆空间将会产生堆内碎块。

C语言变量声明内存分配(转)

  1. 栈区(stack)——程序运行时由编译器自动分配,存放函数的参数值,局部变量的值等。其操作方式类似于数据结构中的栈。程序结束时由编译器自动释放。
  2. 堆区(heap)——在内存开辟另一块存储区域。一般由程序员分配释放,若程序员不释放,程序结束时可能由OS回收。注意它与数据结构中的堆是两回事,分配方式类似于链表,用malloc,calloc,realloc等分配的就在堆上。
  3. 全局区(静态区)(static)——编译器编译时即分配内存。全局变量和静态变量的存储是放在一块的。对于C语言初始化的全局变量和静态变量在一块区域, 未初始化的全局变量和未初始化的静态变量在相邻的另一块区域。而C++则没有这个区别 - 程序结束后由系统释放。
  4. 文字常量区 —常量字符串就是放在这里的。 程序结束后由系统释放。
  5. 程序代码区——存放函数体的二进制代码。

例子程序:

int a = 0;    //全局初始化区
char *p1;    //全局未初始化区
int main()
{
    int b;    //栈
    char s[] = "abc";    //栈
    char *p2;    //栈
    char *p3 = "123456";    //“123456/0”在常量区,p3在栈上
    static int c = 0;    //全局(静态)初始化区
    p1 = (char *)malloc(10);    //分配的10字节在堆上,p1指向这块区域
    p2 = (char *)malloc(20);    //分配的20字节在堆上,p2指向这块区域

    strcpy(p1, "123456");    //“123456\0”在常量区,编译器可能会将它与p3所指向的“123456”优化成一个地方。
}
           

堆与栈的比较:

  • 申请方式

stack:由系统自动分配。例如,声明在函数中一个局部变量 int b; 系统自动在栈中为b开辟空间。

heap:需要程序员自己申请,并指明大小,在C中malloc函数,C++中是new运算符。

如:p1 = (char *)malloc(10); p1 = new char[10];

如:p2 = (char *)malloc(10); p2 = new char[20];

注意p1、p2本身是在栈中的。

  • 申请后系统的响应

栈:只要栈的剩余空间大于所申请空间,系统将为程序提供内存,否则将报异常提示栈溢出。

堆:首先应该知道操作系统有一个记录空闲内存地址的链表,当系统收到程序的申请时,会遍历该链表,寻找第一个空间大于所申请空间的堆结点,然后将该结点从空闲结点链表中删除,并将该结点的空间分配给程序。

对于大多数系统,会在这块内存空间中的首地址处记录本次分配的大小,这样,代码中的delete语句才能正确的释放本内存空间。

由于找到的堆结点的大小不一定正好等于申请的大小,系统会自动的将多余的那部分重新放入空闲链表中。

  • 申请大小的限制

栈:在Windows下,栈是向低地址扩展的数据结构,是一块连续的内存的区域。这句话的意思是栈顶的地址和栈的最大容量是系统预先规定好的,在 WINDOWS下,栈的大小是2M(也有的说是1M,总之是一个编译时就确定的常数),如果申请的空间超过栈的剩余空间时,将提示overflow。因 此,能从栈获得的空间较小。

  堆:堆是向高地址扩展的数据结构,是不连续的内存区域。这是由于系统是用链表来存储的空闲内存地址的,自然是不连续的,而链表的遍历方向是由低地址向高地址。堆的大小受限于计算机系统中有效的虚拟内存。由此可见,堆获得的空间比较灵活,也比较大。

  • 申请效率的比较

栈由系统自动分配,速度较快。但程序员是无法控制的。

  堆是由new分配的内存,一般速度比较慢,而且容易产生内存碎片,不过用起来最方便。

  另外,在WINDOWS下,最好的方式是用VirtualAlloc分配内存,他不是在堆,也不是栈,而是直接在进程的地址空间中保留一快内存,虽然用起来最不方便。但是速度快,也最灵活。

  • 堆和栈中的存储内容

栈:在函数调用时,第一个进栈的是主函数中后的下一条指令(函数调用语句的下一条可执行语句)的地址,然后是函数的各个参数,在大多数的C编译器中,参数是由右往左入栈的,然后是函数中的局部变量。注意静态变量是不入栈的。

  当本次函数调用结束后,局部变量先出栈,然后是参数,最后栈顶指针指向最开始存的地址,也就是主函数中的下一条指令,程序由该点继续运行。

  堆:一般是在堆的头部用一个字节存放堆的大小。堆中的具体内容有程序员安排。

  • 存取效率的比较

        char s1[] = "a";

  char *s2 = "b";

  a是在运行时刻赋值的;而b是在编译时就确定的;但是,在以后的存取中,在栈上的数组比指针所指向的字符串(例如堆)快。

总结:

堆和栈的主要区别有以下几点:

  1、管理方式不同;

  2、空间大小不同;

  3、能否产生碎片不同;

  4、生长方向不同;

  5、分配方式不同;

  6、分配效率不同;

       管理方式:对于栈来讲,是由编译器自动管理,无需我们手工控制;对于堆来说,释放工作由程序员控制,容易产生memory leak。

  空间大小:一般来讲在32位系统下,堆内存可以达到4G的空间,从这个角度来看堆内存几乎是没有什么限制的。但是对于栈来讲,一般都是有一定的空间大小的,例如,在VC6下面,默认的栈空间大小是1M。当然,这个值可以修改。

  碎片问题:对于堆来讲,频繁的new/delete势必会造成内存空间的不连续,从而造成大量的碎片,使程序效率降低。对于栈来讲,则不会存在这个问题,因为栈是先进后出的队列,他们是如此的一一对应,以至于永远都不可能有一个内存块从栈中间弹出,在他弹出之前,在他上面的后进的栈内容已经被弹出,详细的可以参考数据结构。

  生长方向:对于堆来讲,生长方向是向上的,也就是向着内存地址增加的方向;对于栈来讲,它的生长方向是向下的,是向着内存地址减小的方向增长。

  分配方式:堆都是动态分配的,没有静态分配的堆。栈有2种分配方式:静态分配和动态分配。静态分配是编译器完成的,比如局部变量的分配。动态分配由malloca函数进行分配,但是栈的动态分配和堆是不同的,他的动态分配是由编译器进行释放,无需我们手工实现。

  分配效率:栈是机器系统提供的数据结构,计算机会在底层对栈提供支持:分配专门的寄存器存放栈的地址,压栈出栈都有专门的指令执行,这就决定了栈的效率比较高。堆则是C/C++函数库提供的,它的机制是很复杂的,例如为了分配一块内存,库函数会按照一定的算法(具体的算法可以参考数据结构/操作系统)在堆内存中搜索可用的足够大小的空间,如果没有足够大小的空间(可能是由于内存碎片太多),就有可能调用系统功能去增加程序数据段的内存空间,这样就有机会分 到足够大小的内存,然后进行返回。显然,堆的效率比栈要低得多。

  从这里我们可以看到,堆和栈相比,由于大量new/delete的使用,容易造成大量的内存碎片;由于没有专门的系统支持,效率很低;由于可能引发用户态和核心态的切换,内存的申请,代价变得更加昂贵。所以栈在程序中是应用最广泛的,就算是函数的调用也利用栈去完成,函数调用过程中的参数,返回地址, EBP和局部变量都采用栈的方式存放。所以,我们推荐大家尽量用栈,而不是用堆。

  虽然栈有如此众多的好处,但是由于和堆相比不是那么灵活,有时候分配大量的内存空间,还是用堆好一些。

  无论是堆还是栈,都要防止越界现象的发生(除非你是故意使其越界),因为越界的结果要么是程序崩溃,要么是摧毁程序的堆、栈结构,产生以想不到的结果。

参考:

https://www.cnblogs.com/ruixin-jia/p/5877492.html

继续阅读