天天看点

Android源码剖析之-------Handler机制详解

Handler是用来发送并处理消息的,是Android的消息机制的具体实现。一个Handler必须和一个Looper进行关联才能进行消息的发送和处理。Handler所完成的就是将一个操作从一个线程切换到与Handler关联的Looper所在的线程去执行。这个过程中,Looper扮演的是一个消息循环的角色。Looper里有一个MessageQueue,它是负责接收消息和取出消息,Handler负责的是发送消息和处理消息。默认情况下,Thread里是没有Looper的,通过ThreadLoacal可以为Thread设置Looper。下面,结合源码分别介绍ThreadLoad、Looper、MessageQueque、Handler的工作原理、以及主线程的消息循环和Handler。

ThreadLocal的工作原理

ThreadLocal是用来存取具有线程作用域的数据的类。通过其get和set方法,可以访问当前线程(调用方法的线程)中的线程本地信息。下面结合源码分析一下其具体原理

在线程的定义里面,有一个这样的成员:

ThreadLocal.Values localValues;
           

该成员用来存储具有线程作用域的数据。

Values是ThreadLocal里面的一个静态类:

static class Values {
           

它是个Hash表的数据结构,用来存储和检索数据。

采用ThreadLocal.set()存储数据

我们是通过ThreadLocal的set()方法设置Thread里面的localValues的

public void set(T value) {
    Thread currentThread = Thread.currentThread();
    //获取Thread的values对象
    Values values = values(currentThread);
    if (values == null) {
        values = initializeValues(currentThread);
    }
    values.put(this, value);
}
           

可以看看values( )的实现:

Values values(Thread current) {
    return current.localValues;
}
           

可以看出,它的作用是获取当前线程的localValues成员,最后通过values.put( );将value保存在localValues中。

下面分析一下values.put()是如何保存数据的。

void put(ThreadLocal<?> key, Object value) {
        cleanUp();

        // Keep track of first tombstone. That's where we want to go back
        // and add an entry if necessary.
        int firstTombstone = -1;

        for (int index = key.hash & mask;; index = next(index)) {
            Object k = table[index];

            if (k == key.reference) {
                // Replace existing entry.
                table[index + 1] = value;
                return;
            }

            if (k == null) {
                if (firstTombstone == -1) {
                    // Fill in null slot.
                    table[index] = key.reference;
                    table[index + 1] = value;
                    size++;
                    return;
                }

                // Go back and replace first tombstone.
                table[firstTombstone] = key.reference;
                table[firstTombstone + 1] = value;
                tombstones--;
                size++;
                return;
            }

            // Remember first tombstone.
            if (firstTombstone == -1 && k == TOMBSTONE) {
                firstTombstone = index;
            }
        }
    }
           

在Values类里面是用一个数组来保存数据的:

/**
 * Map entries. Contains alternating keys (ThreadLocal) and values.
 * The length is always a power of 2.
 */
private Object[] table;
           

put方法采用的hash算法在存储数据。value 存储在key的下一个位置。

采用ThreadLocal.get()获取数据

下面是get方法的实现:

public T get() {
    // Optimized for the fast path.
    Thread currentThread = Thread.currentThread();
    Values values = values(currentThread);
    if (values != null) {
        Object[] table = values.table;
        int index = hash & values.mask;
        if (this.reference == table[index]) {
            return (T) table[index + 1];
        }
    } else {
        values = initializeValues(currentThread);
    }

    return (T) values.getAfterMiss(this);
}
           

可以看到,根据ThreadLocal的hash值和values的掩码,计算出index,index的下一个位置就所要的值。这里采用的是hash查找算法,有兴趣的朋友可以自己查看源码。

MessageQueue的工作原理

MessageQueue不是一个队列,而是一个单链表的数据结构。通过enqueueMeassage()方法执行插入操作,通过next()执行出队操作。

boolean enqueueMessage(Message msg, long when) {
    if (msg.target == null) {
        throw new IllegalArgumentException("Message must have a target.");
    }
    if (msg.isInUse()) {
        throw new IllegalStateException(msg + " This message is already in use.");
    }

    synchronized (this) {
        if (mQuitting) {
            IllegalStateException e = new IllegalStateException(
                    msg.target + " sending message to a Handler on a dead thread");
            Log.w("MessageQueue", e.getMessage(), e);
            msg.recycle();
            return false;
        }

        msg.markInUse();
        msg.when = when;
        Message p = mMessages;
        boolean needWake;
        if (p == null || when == 0 || when < p.when) {
            // New head, wake up the event queue if blocked.
            msg.next = p;
            mMessages = msg;
            needWake = mBlocked;
        } else {
            // Inserted within the middle of the queue.  Usually we don't have to wake
            // up the event queue unless there is a barrier at the head of the queue
            // and the message is the earliest asynchronous message in the queue.
            needWake = mBlocked && p.target == null && msg.isAsynchronous();
            Message prev;

            //1. 遍历链表,将msg按when的先后顺序插入到合适的位置,或者插入到链表的末端
            for (;;) {
                prev = p;
                p = p.next;
                if (p == null || when < p.when) {
                    break;
                }
                if (needWake && p.isAsynchronous()) {
                    needWake = false;
                }
            }
            msg.next = p; // invariant: p == prev.next
            prev.next = msg;
        }

        // We can assume mPtr != 0 because mQuitting is false.
        if (needWake) {
            //2. 唤醒唤醒阻塞的next方法
            nativeWake(mPtr);
        }
    }
    return true;
}
           

从其实现中可以看出它主要完成以下操作

  1. 将msg按when的先后顺序插入到合适的位置,或者插入到链表的末端
  2. 唤醒阻塞的next方法

下面再看看next的工作原理:

Message next() {
    // Return here if the message loop has already quit and been disposed.
    // This can happen if the application tries to restart a looper after quit
    // which is not supported.
    final long ptr = mPtr;
    if (ptr == 0) {
        return null;
    }

    int pendingIdleHandlerCount = -1; // -1 only during first iteration
    int nextPollTimeoutMillis = 0;
    for (;;) {
        if (nextPollTimeoutMillis != 0) {
            Binder.flushPendingCommands();
        }

        nativePollOnce(ptr, nextPollTimeoutMillis);

        synchronized (this) {
            // Try to retrieve the next message.  Return if found.
            final long now = SystemClock.uptimeMillis();
            Message prevMsg = null;
            Message msg = mMessages;
            if (msg != null && msg.target == null) {
                // Stalled by a barrier.  Find the next asynchronous message in the queue.
                do {
                    prevMsg = msg;
                    msg = msg.next;
                } while (msg != null && !msg.isAsynchronous());
            }
            if (msg != null) {
                if (now < msg.when) {
                    // Next message is not ready.  Set a timeout to wake up when it is ready.
                    nextPollTimeoutMillis = (int) Math.min(msg.when - now, Integer.MAX_VALUE);
                } else {
                    // Got a message.
                    mBlocked = false;
                    if (prevMsg != null) {
                        prevMsg.next = msg.next;
                    } else {
                        mMessages = msg.next;
                    }
                    msg.next = null;
                    if (false) Log.v("MessageQueue", "Returning message: " + msg);
                    return msg;
                }
            } else {
                // No more messages.
                nextPollTimeoutMillis = -1;
            }

            // Process the quit message now that all pending messages have been handled.
            if (mQuitting) {
                dispose();
                return null;
            }

            // If first time idle, then get the number of idlers to run.
            // Idle handles only run if the queue is empty or if the first message
            // in the queue (possibly a barrier) is due to be handled in the future.
            if (pendingIdleHandlerCount < 0
                    && (mMessages == null || now < mMessages.when)) {
                pendingIdleHandlerCount = mIdleHandlers.size();
            }
            if (pendingIdleHandlerCount <= 0) {
                // No idle handlers to run.  Loop and wait some more.
                mBlocked = true;
                continue;
            }

            if (mPendingIdleHandlers == null) {
                mPendingIdleHandlers = new IdleHandler[Math.max(pendingIdleHandlerCount, 4)];
            }
            mPendingIdleHandlers = mIdleHandlers.toArray(mPendingIdleHandlers);
        }

        // Run the idle handlers.
        // We only ever reach this code block during the first iteration.
        for (int i = 0; i < pendingIdleHandlerCount; i++) {
            final IdleHandler idler = mPendingIdleHandlers[i];
            mPendingIdleHandlers[i] = null; // release the reference to the handler

            boolean keep = false;
            try {
                keep = idler.queueIdle();
            } catch (Throwable t) {
                Log.wtf("MessageQueue", "IdleHandler threw exception", t);
            }

            if (!keep) {
                synchronized (this) {
                    mIdleHandlers.remove(idler);
                }
            }
        }

        // Reset the idle handler count to 0 so we do not run them again.
        pendingIdleHandlerCount = 0;

        // While calling an idle handler, a new message could have been delivered
        // so go back and look again for a pending message without waiting.
        nextPollTimeoutMillis = 0;
    }
}
           

可以看出,next方法是一个无限循环,如果队列里面没有消息或者消息没有到时间,就阻塞,否则,取出消息并移除。

Looper的工作原理

Looper扮演消息循环的角色,它会不停的从MessageQueue中查看是否有新消息到来,如果有就处理,如果没有就阻塞。Looper有自己的MessageQueue,在Looper被创建的时候会创建它的MessageQueue。

private Looper(boolean quitAllowed) {
    //Looper的消息队列
    mQueue = new MessageQueue(quitAllowed);
    mThread = Thread.currentThread();
}
           

它的构造方法是私有的,我们通过使用prepare()方法可以为当前线程创建Looper:

public static void prepare() {
    prepare(true);
}

private static void prepare(boolean quitAllowed) {
    if (sThreadLocal.get() != null) {
        throw new RuntimeException("Only one Looper may be created per thread");
    }
    //为当前线程创建Looper
    sThreadLocal.set(new Looper(quitAllowed));
}
           

可以看到,Looper中,有一个ThreadLocal成员,用于存取当前线程的线程变量,prepare()方法为当前线程创建了Looper,并保存在当前线程的线程变量中。

当线程的Looper创建完毕之后,通过Looper.loop()方法,为线程开启消息循环。

public static void loop() {
    final Looper me = myLooper();
    if (me == null) {
        throw new RuntimeException("No Looper; Looper.prepare() wasn't called on this thread.");
    }
    final MessageQueue queue = me.mQueue;

    // Make sure the identity of this thread is that of the local process,
    // and keep track of what that identity token actually is.
    Binder.clearCallingIdentity();
    final long ident = Binder.clearCallingIdentity();

    for (;;) {
        //取出消息,如果没有消息则阻塞
        Message msg = queue.next(); // might block
        if (msg == null) {
            // No message indicates that the message queue is quitting.
            return;
        }

        // This must be in a local variable, in case a UI event sets the logger
        Printer logging = me.mLogging;
        if (logging != null) {
            logging.println(">>>>> Dispatching to " + msg.target + " " +
                    msg.callback + ": " + msg.what);
        }

        //分发消息。
        msg.target.dispatchMessage(msg);

        if (logging != null) {
            logging.println("<<<<< Finished to " + msg.target + " " + msg.callback);
        }

        // Make sure that during the course of dispatching the
        // identity of the thread wasn't corrupted.
        final long newIdent = Binder.clearCallingIdentity();
        if (ident != newIdent) {
            Log.wtf(TAG, "Thread identity changed from 0x"
                    + Long.toHexString(ident) + " to 0x"
                    + Long.toHexString(newIdent) + " while dispatching to "
                    + msg.target.getClass().getName() + " "
                    + msg.callback + " what=" + msg.what);
        }

        msg.recycleUnchecked();
    }
}
           

可以看到,loop方法也是一个无线循环,它会不停的从queue中取出消息,如果没有消息,则循环结束。由于next是一个阻塞方法,当队列中没有消息的时候next被阻塞,所以loop也被阻塞,当enqueueMessage()执行完毕后会唤醒next,这个时候loop也被唤醒取出消息进行分发,Looper对消息的分发是通过

msg.target.dispatchMessage(msg);
           

进行的,实际上是调用了Handler的dispatchMessage进行分发。关于Handler的工作原理,稍后介绍。

Handler的工作原理

Handler需要和Looper和MessageQueue进行关联才能进行工作。Handler类里有一个Looper成员和一个MessageQueue成员,分别代表与Handler关联的Looper和Looper的MessageQueue,同时还有一个aysnc标记,用于区分同步异步。Handler的主要工作是发送消息并处理消息,消息可以是同步的也可以是异步的。具体的过程是从一个线程发送消息,在与Handler关联的Looper所在的线程进行处理,从而实现了将一个操作从一个线程切换到了Handler关联的Looper所在的线程。那么,Handler是如何完成这样的切换的呢?下面将详细的讲解。

Handler和Looper关联

首先,从Handler的创建讲起。Handler提供了多个构造函数,但有两个基本的构造函数:提供Looper的和没有提供Looper的,其他的构造函数都是调用这个两个基本的构造函数进行创建的。代码如下:

public Handler(Callback callback, boolean async) {
    if (FIND_POTENTIAL_LEAKS) {
        final Class<? extends Handler> klass = getClass();
        if ((klass.isAnonymousClass() || klass.isMemberClass() || klass.isLocalClass()) &&
                (klass.getModifiers() & Modifier.STATIC) == 0) {
            Log.w(TAG, "The following Handler class should be static or leaks might occur: " +
                klass.getCanonicalName());
        }
    }

    //获取当前线程的Looper对象,与Handler进行关联
    mLooper = Looper.myLooper();
    if (mLooper == null) {
        throw new RuntimeException(
            "Can't create handler inside thread that has not called Looper.prepare()");
    }
    mQueue = mLooper.mQueue;
    mCallback = callback;
    mAsynchronous = async;
}
           

这是没有提供Looper的构造函数,可以看到,Handler会与创建Hanlder的线程的Looper关联,如果当前线程没有Looper,会抛出异常。所以,在创建Handler之前,一定要为当前线程创建Looper。

另外还有另外一个版本:

public Handler(Looper looper, Callback callback, boolean async) {
    mLooper = looper;
    mQueue = looper.mQueue;
    mCallback = callback;
    mAsynchronous = async;
}
           

该版本主要是将Handler与指定线程的Looper相关联。

可见,Handler的构造函数主要是建立Handler与Looper进行关联。

使用Handler发送消息

在创建完Handler之后就可以通过send方式和Post方式发送消息。Handler提供了多种发送消息的方式,但有一种基本的发送方式,其他方式都是调用它来进行的。代码如下:

public boolean sendMessageAtTime(Message msg, long uptimeMillis) {
    MessageQueue queue = mQueue;
    if (queue == null) {
        RuntimeException e = new RuntimeException(
                this + " sendMessageAtTime() called with no mQueue");
        Log.w("Looper", e.getMessage(), e);
        return false;
    }
    return enqueueMessage(queue, msg, uptimeMillis);
}
           

可见,发送最终通过enqueueMessage(queue, msg, uptimeMillis)完成,源码如下:

private boolean enqueueMessage(MessageQueue queue, Message msg, long uptimeMillis) {
    msg.target = this;
    if (mAsynchronous) {
        msg.setAsynchronous(true);
    }
    return queue.enqueueMessage(msg, uptimeMillis);
}
           

可见最终是调用Looper的MessageQueue的enqueueMessage完成消息的发送。

Handler对消息的处理

从上面可以看到,通过Handler发送消息,最终是通过MessageQueue.enqueueMessage()添加到了Looper的消息队列里。同时,enqueueMessage()会唤醒next方法从而唤醒loop()取出消息。我们知道,loop()方法里分发消息是通过

msg.target.dispatchMessage(msg);
           

进行的。最终导致与message关联的Handler的dispatchMessage()被执行,而这个方法是在Looper所在的线程调用的,所以就将Handler处理消息的方法切换到了Looper所在的线程执行。

接下来看看Handler是如何处理消息的。

/**
 * Handle system messages here.
 */
public void dispatchMessage(Message msg) {
    if (msg.callback != null) {//post方式所走的路径
        handleCallback(msg);
    } else {//send方式所走的路径
        if (mCallback != null) {
            if (mCallback.handleMessage(msg)) {
                return;
            }
        }
        handleMessage(msg);
    }
}
           

条理很清晰,这里只对send方式发送的消息进行说明。在实例化Handler时,可以为其指定mCallback,在send方式发送消息是,先执行mCallback的handleMessage,如果返回true则不执行handler的handleMessage方法,否则就执行。

主线程的Looper和Handler

我们知道,ActivityThread是应用程序的主线程,而主线程的入口是其main()方法。 public static void main(String[] args) { SamplingProfilerIntegration.start();

// CloseGuard defaults to true and can be quite spammy.  We
    // disable it here, but selectively enable it later (via
    // StrictMode) on debug builds, but using DropBox, not logs.
    CloseGuard.setEnabled(false);

    Environment.initForCurrentUser();

    // Set the reporter for event logging in libcore
    EventLogger.setReporter(new EventLoggingReporter());

    Security.addProvider(new AndroidKeyStoreProvider());

    // Make sure TrustedCertificateStore looks in the right place for CA certificates
    final File configDir = Environment.getUserConfigDirectory(UserHandle.myUserId());
    TrustedCertificateStore.setDefaultUserDirectory(configDir);

    Process.setArgV0("<pre-initialized>");

    Looper.prepareMainLooper();

    ActivityThread thread = new ActivityThread();
    thread.attach(false);

    if (sMainThreadHandler == null) {
        sMainThreadHandler = thread.getHandler();
    }

    AsyncTask.init();

    if (false) {
        Looper.myLooper().setMessageLogging(new
                LogPrinter(Log.DEBUG, "ActivityThread"));
    }

    Looper.loop();

    throw new RuntimeException("Main thread loop unexpectedly exited");
}
           

该方法为主线程创建了Looper和消息循环。因此,当我们在主线程里创建handler时,如果不提供Looper,默认是和主线程的Looper进行关联。

另外,ActivityThread还有两个实例变量,

final Looper mLooper = Looper.myLooper();
final H mH = new H();
           

其中H是一个Handler。当实例化的时候,主线程的Looper已经创建完毕,因此它是和主线程的Looper关联的。我们知道AMS是通过ApplicationThread和应用程序通讯来完成应用程序组件的生命周期回调,而这两者之间的通讯是跨进程的。其中,ApplicationThread是服务方,AMS通过Binder使用ApplicationThread。而ApplicationThread的Binder方法运行在线程池中,组件的生命周期是运行在主线程,因此通过H来进行切换。