GCN实战
参数初始化
import time
import argparse
import numpy as np
import torch
import torch.nn.functional as F
import torch.optim as optim
from pygcn.pygcn.utils import load_data, accuracy
from pygcn.pygcn.models import GCN
# Training settings
parser = argparse.ArgumentParser()
parser.add_argument('--no-cuda', action='store_true', default=False,
help='Disables CUDA training.')
parser.add_argument('--fastmode', action='store_true', default=False,
help='Validate during training pass.')
parser.add_argument('--seed', type=int, default=42, help='Random seed.')
parser.add_argument('--epochs', type=int, default=200,
help='Number of epochs to train.')
parser.add_argument('--lr', type=float, default=0.01,
help='Initial learning rate.')
parser.add_argument('--weight_decay', type=float, default=5e-4,
help='Weight decay (L2 loss on parameters).')
parser.add_argument('--hidden', type=int, default=16,
help='Number of hidden units.')
parser.add_argument('--dropout', type=float, default=0.5,
help='Dropout rate (1 - keep probability).')
args = parser.parse_args()
args.cuda = not args.no_cuda and torch.cuda.is_available()
np.random.seed(args.seed)
torch.manual_seed(args.seed)
if args.cuda:
torch.cuda.manual_seed(args.seed)
# MAC: option + command + <-
# Load data
加载数据
adj, features, labels, idx_train, idx_val, idx_test = load_data()
def load_data(path="../data/cora/", dataset="cora"):
"""Load citation network dataset (cora only for now)"""
print('Loading {} dataset...'.format(dataset))
idx_features_labels = np.genfromtxt("{}{}.content".format(path, dataset),
dtype=np.dtype(str))
features = sp.csr_matrix(idx_features_labels[:, 1:-1], dtype=np.float32) # 取特征feature
labels = encode_onehot(idx_features_labels[:, -1]) # one-hot label
# build graph
idx = np.array(idx_features_labels[:, 0], dtype=np.int32) # 节点
idx_map = {j: i for i, j in enumerate(idx)} # 构建节点的索引字典
edges_unordered = np.genfromtxt("{}{}.cites".format(path, dataset), # 导入edge的数据
dtype=np.int32)
edges = np.array(list(map(idx_map.get, edges_unordered.flatten())),
dtype=np.int32).reshape(edges_unordered.shape) # 将之前的转换成字典编号后的边
adj = sp.coo_matrix((np.ones(edges.shape[0]), (edges[:, 0], edges[:, 1])), # 构建边的邻接矩阵
shape=(labels.shape[0], labels.shape[0]),
dtype=np.float32)
# build symmetric adjacency matrix,计算转置矩阵。将有向图转成无向图
adj = adj + adj.T.multiply(adj.T > adj) - adj.multiply(adj.T > adj)
features = normalize(features) # 对特征做了归一化的操作
adj = normalize(adj + sp.eye(adj.shape[0])) # 对A+I归一化
# 训练,验证,测试的样本
idx_train = range(140)
idx_val = range(200, 500)
idx_test = range(500, 1500)
# 将numpy的数据转换成torch格式
features = torch.FloatTensor(np.array(features.todense()))
labels = torch.LongTensor(np.where(labels)[1])
adj = sparse_mx_to_torch_sparse_tensor(adj)
idx_train = torch.LongTensor(idx_train)
idx_val = torch.LongTensor(idx_val)
idx_test = torch.LongTensor(idx_test)
return adj, features, labels, idx_train, idx_val, idx_test
模型
class GraphConvolution(Module):
"""
Simple GCN layer, similar to https://arxiv.org/abs/1609.02907
"""
def __init__(self, in_features, out_features, bias=True):
super(GraphConvolution, self).__init__()
self.in_features = in_features ## 输入特征维度
self.out_features = out_features ## 输出特征维度
self.weight = Parameter(torch.FloatTensor(in_features, out_features)) # input_features, out_features
if bias:
self.bias = Parameter(torch.FloatTensor(out_features))
else:
self.register_parameter('bias', None)
self.reset_parameters()
def reset_parameters(self):
stdv = 1. / math.sqrt(self.weight.size(1))
self.weight.data.uniform_(-stdv, stdv) # 随机化参数
if self.bias is not None:
self.bias.data.uniform_(-stdv, stdv)
def forward(self, input, adj):
support = torch.mm(input, self.weight) # GraphConvolution forward。input*weight
output = torch.spmm(adj, support) # 稀疏矩阵的相乘,和mm一样的效果
if self.bias is not None:
return output + self.bias
else:
return output
def __repr__(self):
return self.__class__.__name__ + ' (' \
+ str(self.in_features) + ' -> ' \
+ str(self.out_features) + ')'
class GCN(nn.Module):
def __init__(self, nfeat, nhid, nclass, dropout):
super(GCN, self).__init__()
self.gc1 = GraphConvolution(nfeat, nhid) # 构建第一层 GCN
self.gc2 = GraphConvolution(nhid, nclass) # 构建第二层 GCN
self.dropout = dropout
def forward(self, x, adj):
x = F.relu(self.gc1(x, adj))
x = F.dropout(x, self.dropout, training=self.training)
x = self.gc2(x, adj)
return F.log_softmax(x, dim=1)
训练模型
# Model and optimizer,构造GCN,初始化参数。两层GCN
model = GCN(nfeat=features.shape[1],
nhid=args.hidden,
nclass=labels.max().item() + 1,
dropout=args.dropout)
optimizer = optim.Adam(model.parameters(),
lr=args.lr, weight_decay=args.weight_decay)
if args.cuda:
model.cuda()
features = features.cuda()
adj = adj.cuda()
labels = labels.cuda()
idx_train = idx_train.cuda()
idx_val = idx_val.cuda()
idx_test = idx_test.cuda()
def train(epoch):
t = time.time()
model.train()
optimizer.zero_grad() # GraphConvolution forward
output = model(features, adj) # 运行模型,输入参数 (features, adj)
loss_train = F.nll_loss(output[idx_train], labels[idx_train])
acc_train = accuracy(output[idx_train], labels[idx_train])
loss_train.backward()
optimizer.step()
if not args.fastmode:
# Evaluate validation set performance separately,
# deactivates dropout during validation run.
model.eval()
output = model(features, adj)
loss_val = F.nll_loss(output[idx_val], labels[idx_val])
acc_val = accuracy(output[idx_val], labels[idx_val])
print('Epoch: {:04d}'.format(epoch+1),
'loss_train: {:.4f}'.format(loss_train.item()),
'acc_train: {:.4f}'.format(acc_train.item()),
'loss_val: {:.4f}'.format(loss_val.item()),
'acc_val: {:.4f}'.format(acc_val.item()),
'time: {:.4f}s'.format(time.time() - t))
def test():
model.eval()
output = model(features, adj)
loss_test = F.nll_loss(output[idx_test], labels[idx_test])
acc_test = accuracy(output[idx_test], labels[idx_test])
print("Test set results:",
"loss= {:.4f}".format(loss_test.item()),
"accuracy= {:.4f}".format(acc_test.item()))
# Train model
t_total = time.time()
for epoch in range(args.epochs):
train(epoch)
print("Optimization Finished!")
print("Total time elapsed: {:.4f}s".format(time.time() - t_total))
# Testing
test()