天天看点

Android下led控制(下)--Linux驱动部分--platform机制

前面写了两个博文,一个是Android下,一个是Linux下led控制,但是Linux下那个写的有很多漏洞和不清楚的地方。这里写一篇作为补充,也是我在学习中理解的深入。当然这个可能也会有很多漏洞,如果我有更深入的了解,继续进行补充。我的开发板是全志科技的CQA83T,成都启划公司出的扩展板。

先贴出来驱动源程序的代码,此代码的位置在 lichee\linux-3.4\drivers\char\led.c:

#include <linux/types.h>
#include <linux/delay.h>
#include <linux/platform_device.h>
#include <linux/init.h>
#include <linux/input.h>
#include <linux/irq.h>
#include <linux/interrupt.h>
#include <linux/jiffies.h>
#include <linux/module.h>
#include <linux/gpio.h>
#include <linux/input/matrix_keypad.h>
#include <linux/slab.h>
#include <asm/io.h>
#include <mach/irqs.h>
#include <mach/hardware.h>
#include <mach/sys_config.h>
#include <linux/miscdevice.h>
#include <linux/printk.h>
#include <linux/kernel.h>

#define LED_IOCTL_SET_ON		1
#define LED_IOCTL_SET_OFF			0
static script_item_u			led_val[5];
static script_item_value_type_e		led_type;
static struct semaphore lock;

//led_open
static int led_open(struct inode *inode, struct file *file)
{
	if (!down_trylock(&lock))
		return 0;
	else
		return -EBUSY;
}

//led_close
static int  led_close(struct inode *inode, struct file *file)
{
	up(&lock);
	return 0;
}

//led_ioctl
static long  led_ioctl(struct file *filep, unsigned int cmd,
		unsigned long arg)
{
	unsigned int n;
	n = (unsigned int)arg;
	switch (cmd) {
		case LED_IOCTL_SET_ON:
			if (n < 1)
				return -EINVAL;
			if(led_val[n-1].gpio.gpio != -1) {
				__gpio_set_value(led_val[n-1].gpio.gpio, 1);
				printk("led%d on !\n", n);
			}
			break;

		case LED_IOCTL_SET_OFF:
		default:
			if (n < 1)
				return -EINVAL;
			if(led_val[n-1].gpio.gpio != -1) {
				__gpio_set_value(led_val[n-1].gpio.gpio, 0);
				printk("led%d off !\n", n);
			}
			break;
	}

	return 0;
}

//led_gpio
static int __devinit led_gpio(void)
{
	int i = 0;
	char gpio_num[10];

	for(i =1 ; i < 6; i++) 
	{
		sprintf(gpio_num, "led_gpio%d", i);

		led_type= script_get_item("led_para", gpio_num, &led_val[i-1]);
		if(SCIRPT_ITEM_VALUE_TYPE_PIO != led_type) {
			printk("led_gpio type fail !");
//			gpio_free(led_val[i-1].gpio.gpio);
			led_val[i-1].gpio.gpio	= -1;
			continue;
		}
	
		if(0 != gpio_request(led_val[i-1].gpio.gpio, NULL)) {
			printk("led_gpio gpio_request fail !");		
			led_val[i-1].gpio.gpio = -1;
			continue;
		}

		if (0 != gpio_direction_output(led_val[i-1].gpio.gpio, 0)) {
			printk("led_gpio gpio_direction_output fail !");
//			gpio_free(led_val[i-1].gpio.gpio);
			led_val[i-1].gpio.gpio = -1;
			continue;
		}	
	}

	return 0;
}

//file_operations
static struct file_operations leds_ops = {
	.owner			= THIS_MODULE,
	.open			= led_open,
	.release		= led_close, 
	.unlocked_ioctl		= led_ioctl,
};

//miscdevice
static struct miscdevice leds_dev = {
	.minor = MISC_DYNAMIC_MINOR,
	.name = "led",
	.fops = &leds_ops,
};

//led_remove
static int __devexit led_remove(struct platform_device *pdev)
{
	return 0;
}

//led_probe
static int __devinit led_probe(struct platform_device *pdev)
{
	int led_used;
	script_item_u	val;
	script_item_value_type_e  type;
	
	int err;
	
    printk("led_para!\n");
	type = script_get_item("led_para", "led_used", &val);
	if (SCIRPT_ITEM_VALUE_TYPE_INT != type) {
		printk("%s script_get_item \"led_para\" led_used = %d\n",
				__FUNCTION__, val.val);
		return -1;
	}
	led_used = val.val;
	printk("%s script_get_item \"led_para\" led_used = %d\n",
				__FUNCTION__, val.val);

	if(!led_used) {
		printk("%s led_used is not used in config,  led_used=%d\n", __FUNCTION__,led_used);
		return -1;
	}

	err = led_gpio();
	if (err)
		return -1;

	sema_init(&lock, 1);
	err = misc_register(&leds_dev);
	printk("======= cqa83 led initialized ================\n");
	
	return err;
}

//platform_device
struct platform_device led_device = {
	.name		= "led",	
};

//platform_driver
static struct platform_driver led_driver = {
	.probe		= led_probe,
	.remove		= __devexit_p(led_remove),
	.driver		= {
		.name	= "led",
		.owner	= THIS_MODULE,
	},
};

//led_init
static int __init led_init(void)
{	
	
     if (platform_device_register(&led_device)) {
        printk("%s: register gpio device failed\n", __func__);
    }
    if (platform_driver_register(&led_driver)) {
        printk("%s: register gpio driver failed\n", __func__);
    }

	return 0;
}

//led_exit
static void __exit led_exit(void)
{
	platform_driver_unregister(&led_driver);	
}


module_init(led_init);
module_exit(led_exit);

MODULE_DESCRIPTION("Led Driver");
MODULE_LICENSE("GPL v2");
           

首先,在这里我们应该获取这样几个信息,

1、这是一个Linux驱动程序,一个字符驱动,一个杂项字符驱动。从err = misc_register(&leds_dev);可以知道是杂项字符驱动。

2、这里使用到了Linux的GPIO驱动模型。

3、这个驱动是基于platform机制的。

第一,我们先说一说platform机制。

platform机制是Linux2.6引入的一套新的驱动管理和注册机制,Linux大部分设备驱动中都能使用这套机制。platform是一种虚拟总线,主要用来管理CPU的片上资源具有很好的移植性。platform机制本身的使用并不复杂,由platform_device(总是设备)和platform_driver(总线驱动)两部分组成,设备用platform_device表示,驱动用platform_driver注册。系统首先会初始化platform总线,当platform设备想要挂载到总线上时,定义platform_device和platform_driver,然后使用函数platform_device_register注册platform_device,再使用platform_driver_register函数注册platform_driver驱动,这里要记住,platform_device_register它一定要在platform_driver_register之前。也就是一定要先注册设备再注册驱动,因为在驱动注册是,要先查找与之对应的设备,如果能够找到并匹配成功才能注册驱动。具体细节下面会分析。

下面,我们来说一下platform总线,platform总线相关的代码都在内核 linux-3.4\drivers\base\platform.c里面。既然platform总线是在内核启动时初始化,那么先列出初始化函数的调用过程,asmlinkagevoid __init start_kernel(void)[linux-3.4\init\main.c]   -->  static noinline void __init_refok rest_init(void)[linux-3.4\init\main.c]   -->  static int __init kernel_init(void * unused)[linux-3.4\init\main.c]   -->  static void __init do_basic_setup(void)  [linux-3.4\init\main.c] -->  void __init driver_init(void)  [linux-3.4\drivers\base\init.c]   -->  int __init platform_bus_init(void)  [linux-3.4\drivers\base\platform.c] ,中括号里是文件位置,函数platform_bus_init就是platform的总线初始化函数。

来看platform总线初始化函数platform_bus_init,位于linux-3.4\drivers\base\platform.c中:

int __init platform_bus_init(void)
{
	int error;

	early_platform_cleanup();

	error = device_register(&platform_bus);
	if (error)
		return error;
	error =  bus_register(&platform_bus_type);
	if (error)
		device_unregister(&platform_bus);
	return error;
}
           

按图索骥,继续深入platform总线初始化函数来看early_platform_cleanup函数,这个函数从名字上就可以看出是一个清理函数。我们来看一下这个函数的源码,位于linux-3.4\drivers\base\platform.c中:

/**
 * early_platform_cleanup - clean up early platform code
 */
void __init early_platform_cleanup(void)
{
	struct platform_device *pd, *pd2;

	/* clean up the devres list used to chain devices */
	list_for_each_entry_safe(pd, pd2, &early_platform_device_list,
				 dev.devres_head) {
		list_del(&pd->dev.devres_head);
		memset(&pd->dev.devres_head, 0, sizeof(pd->dev.devres_head));
	}
}
           

从注释可以看出,这个函数是清除早期的platform设备链表,list_for_each_entry_safe的作用是遍历先前的platform设备链表early_platform_device_list

,并清零每一个链表节点。

下面继续platform总线初始化函数中的device_register(&platform_bus)的函数,该函数是将platform总线作为设备进行注册。我们先看参数plat_bus,位于linux-3.4\drivers\base\platform.c中:

struct device platform_bus = {
	.init_name	= "platform",
};
EXPORT_SYMBOL_GPL(platform_bus);
           

参数platform_bus是一个device类型的结构体,下面EXPORT_SYMBOL_GPL是宏,这个宏说明其参数所指向的函数只给有GPL认证的模块使用。下面来看一下device结构体,位于linux-3.4\include\linux\device.h中:

struct device {
	struct device		*parent;

	struct device_private	*p;

	struct kobject kobj;
	const char		*init_name; /* initial name of the device */
	const struct device_type *type;

	struct mutex		mutex;	/* mutex to synchronize calls to
					 * its driver.
					 */

	struct bus_type	*bus;		/* type of bus device is on */
	struct device_driver *driver;	/* which driver has allocated this
					   device */
	void		*platform_data;	/* Platform specific data, device
					   core doesn't touch it */
	struct dev_pm_info	power;
	struct dev_pm_domain	*pm_domain;

#ifdef CONFIG_NUMA
	int		numa_node;	/* NUMA node this device is close to */
#endif
	u64		*dma_mask;	/* dma mask (if dma'able device) */
	u64		coherent_dma_mask;/* Like dma_mask, but for
					     alloc_coherent mappings as
					     not all hardware supports
					     64 bit addresses for consistent
					     allocations such descriptors. */

	struct device_dma_parameters *dma_parms;

	struct list_head	dma_pools;	/* dma pools (if dma'ble) */

	struct dma_coherent_mem	*dma_mem; /* internal for coherent mem
					     override */
#ifdef CONFIG_CMA
	struct cma *cma_area;		/* contiguous memory area for dma
					   allocations */
#endif
	/* arch specific additions */
	struct dev_archdata	archdata;

	struct device_node	*of_node; /* associated device tree node */

	dev_t			devt;	/* dev_t, creates the sysfs "dev" */
	u32			id;	/* device instance */

	spinlock_t		devres_lock;
	struct list_head	devres_head;

	struct klist_node	knode_class;
	struct class		*class;
	const struct attribute_group **groups;	/* optional groups */

	void	(*release)(struct device *dev);
};
           

这个是基本的设备结构体,用于描述设备相关信息设备之间的层次关系,以及设备与总线驱动的关系。其实简单说在Linux内核里用这个结构体来表示一个设备,并用于设备在内核中的注册。网上有较多关于这个结构体的解析这里就不多说了。

接下来看设备注册函数device_register,位于linux-3.4\drivers\base\core.c中:

int device_register(struct device *dev)
{
	device_initialize(dev);
	return device_add(dev);
}
           

这个函数作用是向系统注册一个设备,它首先使用函数device_initialize对设备进行初始化,然后使用device_add添加设备。下面分别来看一下这俩函数,但这里不做解释,这俩函数都是位于linux-3.4\drivers\base\core.c中:

void device_initialize(struct device *dev)
{
	dev->kobj.kset = devices_kset;
	kobject_init(&dev->kobj, &device_ktype);
	INIT_LIST_HEAD(&dev->dma_pools);
	mutex_init(&dev->mutex);
	lockdep_set_novalidate_class(&dev->mutex);
	spin_lock_init(&dev->devres_lock);
	INIT_LIST_HEAD(&dev->devres_head);
	device_pm_init(dev);
	set_dev_node(dev, -1);
}
           
int device_add(struct device *dev)
{
	struct device *parent = NULL;
	struct kobject *kobj;
	struct class_interface *class_intf;
	int error = -EINVAL;

	dev = get_device(dev);
	if (!dev)
		goto done;

	if (!dev->p) {
		error = device_private_init(dev);
		if (error)
			goto done;
	}

	/*
	 * for statically allocated devices, which should all be converted
	 * some day, we need to initialize the name. We prevent reading back
	 * the name, and force the use of dev_name()
	 */
	if (dev->init_name) {
		dev_set_name(dev, "%s", dev->init_name);
		dev->init_name = NULL;
	}

	/* subsystems can specify simple device enumeration */
	if (!dev_name(dev) && dev->bus && dev->bus->dev_name)
		dev_set_name(dev, "%s%u", dev->bus->dev_name, dev->id);

	if (!dev_name(dev)) {
		error = -EINVAL;
		goto name_error;
	}

	pr_debug("device: '%s': %s\n", dev_name(dev), __func__);

	parent = get_device(dev->parent);
	kobj = get_device_parent(dev, parent);
	if (kobj)
		dev->kobj.parent = kobj;

	/* use parent numa_node */
	if (parent)
		set_dev_node(dev, dev_to_node(parent));

	/* first, register with generic layer. */
	/* we require the name to be set before, and pass NULL */
	error = kobject_add(&dev->kobj, dev->kobj.parent, NULL);
	if (error)
		goto Error;

	/* notify platform of device entry */
	if (platform_notify)
		platform_notify(dev);

	error = device_create_file(dev, &uevent_attr);
	if (error)
		goto attrError;

	if (MAJOR(dev->devt)) {
		error = device_create_file(dev, &devt_attr);
		if (error)
			goto ueventattrError;

		error = device_create_sys_dev_entry(dev);
		if (error)
			goto devtattrError;

		devtmpfs_create_node(dev);
	}

	error = device_add_class_symlinks(dev);
	if (error)
		goto SymlinkError;
	error = device_add_attrs(dev);
	if (error)
		goto AttrsError;
	error = bus_add_device(dev);
	if (error)
		goto BusError;
	error = dpm_sysfs_add(dev);
	if (error)
		goto DPMError;
	device_pm_add(dev);

	/* Notify clients of device addition.  This call must come
	 * after dpm_sysfs_add() and before kobject_uevent().
	 */
	if (dev->bus)
		blocking_notifier_call_chain(&dev->bus->p->bus_notifier,
					     BUS_NOTIFY_ADD_DEVICE, dev);

	kobject_uevent(&dev->kobj, KOBJ_ADD);
	bus_probe_device(dev);
	if (parent)
		klist_add_tail(&dev->p->knode_parent,
			       &parent->p->klist_children);

	if (dev->class) {
		mutex_lock(&dev->class->p->mutex);
		/* tie the class to the device */
		klist_add_tail(&dev->knode_class,
			       &dev->class->p->klist_devices);

		/* notify any interfaces that the device is here */
		list_for_each_entry(class_intf,
				    &dev->class->p->interfaces, node)
			if (class_intf->add_dev)
				class_intf->add_dev(dev, class_intf);
		mutex_unlock(&dev->class->p->mutex);
	}
done:
	put_device(dev);
	return error;
 DPMError:
	bus_remove_device(dev);
 BusError:
	device_remove_attrs(dev);
 AttrsError:
	device_remove_class_symlinks(dev);
 SymlinkError:
	if (MAJOR(dev->devt))
		devtmpfs_delete_node(dev);
	if (MAJOR(dev->devt))
		device_remove_sys_dev_entry(dev);
 devtattrError:
	if (MAJOR(dev->devt))
		device_remove_file(dev, &devt_attr);
 ueventattrError:
	device_remove_file(dev, &uevent_attr);
 attrError:
	kobject_uevent(&dev->kobj, KOBJ_REMOVE);
	kobject_del(&dev->kobj);
 Error:
	cleanup_device_parent(dev);
	if (parent)
		put_device(parent);
name_error:
	kfree(dev->p);
	dev->p = NULL;
	goto done;
}
           

下面我们继续回到platform总线初始化函数platform_bus_init中,来看总线注册函数bus_register(&platform_bus_type),先看一下参数platfor_bus_type,位于linux-3.4\drivers\base\platform.c中:

struct bus_type platform_bus_type = {
	.name		= "platform",
	.dev_attrs	= platform_dev_attrs,
	.match		= platform_match,
	.uevent		= platform_uevent,
	.pm		= &platform_dev_pm_ops,
};
EXPORT_SYMBOL_GPL(platform_bus_type);
           

从上面可以看出这是一个bus_type类型的结构体,bus_type类型结构体的定义位于linux-3.4\include\linux\device.h中:

struct bus_type {
	const char		*name;
	const char		*dev_name;
	struct device		*dev_root;
	struct bus_attribute	*bus_attrs;
	struct device_attribute	*dev_attrs;
	struct driver_attribute	*drv_attrs;

	int (*match)(struct device *dev, struct device_driver *drv);
	int (*uevent)(struct device *dev, struct kobj_uevent_env *env);
	int (*probe)(struct device *dev);
	int (*remove)(struct device *dev);
	void (*shutdown)(struct device *dev);

	int (*suspend)(struct device *dev, pm_message_t state);
	int (*resume)(struct device *dev);

	const struct dev_pm_ops *pm;

	struct iommu_ops *iommu_ops;

	struct subsys_private *p;
};
           

这是一个设备总线类型结构体,成员变量指出了总线名称,子设备前缀名(像"foo%u", dev->id),被用作父设备的默认设备,总线属性,设备属性,驱动属性以及一些回调函数。

下面来看一下总线注册函数bus_register,位于linux-3.4\include\linux\device.h中,这是一个宏定义:

/* This is a #define to keep the compiler from merging different
 * instances of the __key variable */
#define bus_register(subsys)			\
({						\
	static struct lock_class_key __key;	\
	__bus_register(subsys, &__key);	\
})
           

继续看函数_bus_register(subsys, &__key)函数,位于linux-3.4\drivers\base\bus.c中:

int __bus_register(struct bus_type *bus, struct lock_class_key *key)
{
	int retval;
	struct subsys_private *priv;

	priv = kzalloc(sizeof(struct subsys_private), GFP_KERNEL);
	if (!priv)
		return -ENOMEM;

	priv->bus = bus;
	bus->p = priv;

	BLOCKING_INIT_NOTIFIER_HEAD(&priv->bus_notifier);

	retval = kobject_set_name(&priv->subsys.kobj, "%s", bus->name);
	if (retval)
		goto out;

	priv->subsys.kobj.kset = bus_kset;
	priv->subsys.kobj.ktype = &bus_ktype;
	priv->drivers_autoprobe = 1;

	retval = kset_register(&priv->subsys);
	if (retval)
		goto out;

	retval = bus_create_file(bus, &bus_attr_uevent);
	if (retval)
		goto bus_uevent_fail;

	priv->devices_kset = kset_create_and_add("devices", NULL,
						 &priv->subsys.kobj);
	if (!priv->devices_kset) {
		retval = -ENOMEM;
		goto bus_devices_fail;
	}

	priv->drivers_kset = kset_create_and_add("drivers", NULL,
						 &priv->subsys.kobj);
	if (!priv->drivers_kset) {
		retval = -ENOMEM;
		goto bus_drivers_fail;
	}

	INIT_LIST_HEAD(&priv->interfaces);
	__mutex_init(&priv->mutex, "subsys mutex", key);
	klist_init(&priv->klist_devices, klist_devices_get, klist_devices_put);
	klist_init(&priv->klist_drivers, NULL, NULL);

	retval = add_probe_files(bus);
	if (retval)
		goto bus_probe_files_fail;

	retval = bus_add_attrs(bus);
	if (retval)
		goto bus_attrs_fail;

	pr_debug("bus: '%s': registered\n", bus->name);
	return 0;

bus_attrs_fail:
	remove_probe_files(bus);
bus_probe_files_fail:
	kset_unregister(bus->p->drivers_kset);
bus_drivers_fail:
	kset_unregister(bus->p->devices_kset);
bus_devices_fail:
	bus_remove_file(bus, &bus_attr_uevent);
bus_uevent_fail:
	kset_unregister(&bus->p->subsys);
out:
	kfree(bus->p);
	bus->p = NULL;
	return retval;
}
EXPORT_SYMBOL_GPL(__bus_register);
           

这个函数进行了返回检测,如果注册识别,则进行与注册相反的操作注销device_unregister。这个函数位于linux-3.4\drivers\base\core.c中:

/**
 * device_unregister - unregister device from system.
 * @dev: device going away.
 *
 * We do this in two parts, like we do device_register(). First,
 * we remove it from all the subsystems with device_del(), then
 * we decrement the reference count via put_device(). If that
 * is the final reference count, the device will be cleaned up
 * via device_release() above. Otherwise, the structure will
 * stick around until the final reference to the device is dropped.
 */
void device_unregister(struct device *dev)
{
	pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
	device_del(dev);
	put_device(dev);
}
           

附上了英文注释,解释很清楚了。

到这里呢,platform总线初始化就结束了,没有做更多的解释,主要原因是我也在学习,还有就是每个函数的作用无论是见名知意还是查看函数说明,这个函数的功能是很明确的。

现在呢,platform总线已经初始化完成,下面就是把platform设备和驱动挂载到platform总线上了。

现在我们还是回到开始led驱动函数led.c中,了解过驱动的人都知道,驱动被加载到内核第一次被调用的函数就是其初始化函数,在led.c中:

module_init(led_init);
           

初始化函数led_init的源码再写一遍,如下:

static int __init led_init(void)
{	
	
     if (platform_device_register(&led_device)) {
        printk("%s: register gpio device failed\n", __func__);
    }
    if (platform_driver_register(&led_driver)) {
        printk("%s: register gpio driver failed\n", __func__);
    }

	return 0;
}
           

这里第一步是设备注册函数platform_device_register(&led_device),我们先看参数led_device:

struct platform_device led_device = {
	.name		= "led",	
};
           

led_device是一个platform_device类型的结构体,platform_device结构体的定义在linux-3.4\include\linux\platform_device.h中:

struct platform_device {
	const char	* name;//设备名
	int		id;//设备id
	struct device	dev;//包含设备结构体
	u32		num_resources;//资源个数
	struct resource	* resource;//资源结构体

	const struct platform_device_id	*id_entry;

	/* MFD cell pointer */
	struct mfd_cell *mfd_cell;

	/* arch specific additions */
	struct pdev_archdata	archdata;
};
           

这个结构体里面封装了device结构体,resource结构体,说明platform_device是device结构体派生出的一个结构体,platform_device是一个特殊的device。下面来看platform_device中最重要的结构体resource结构体,该结构体位于linux-3.4\include\linux\ioprt.h中:

struct resource {
	resource_size_t start;//资源起始地址
	resource_size_t end;//资源结束地址
	const char *name;//定义资源名称
	unsigned long flags;//定义资源类型
	struct resource *parent, *sibling, *child;//资源树
};
           

这个结构体表明了设备所拥有的资源。

platform_device结构体包含了device结构体,device结构体描述了设备的详细情况,在面向对象编程中device是所有设备的基类。device结构体在platform总线初始化的时候已经说过了,这里就不说了。

然后我们来看一下platform_device_register 函数,其位于linux-3.4\drivers\base\platform.c中:

/**
 * platform_device_register - add a platform-level device
 * @pdev: platform device we're adding
 */
int platform_device_register(struct platform_device *pdev)
{
	device_initialize(&pdev->dev);
	arch_setup_pdev_archdata(pdev);
	return platform_device_add(pdev);
}
EXPORT_SYMBOL_GPL(platform_device_register);
           

这里首先对设备使用函数device_initalize进行初始化,这个函数在上面platform总线初始化的时候已经说过,这里不说了。在这是不是可以发散一下,只要设备注册进内核,无论是总线设备也好,其他设备也好,内核都把他们看成设备,使用同样的方式初始化。

然后使用arch_setup_pdev_archdata(pdev),这个函数位于linux-3.4\drivers\base\platform.c中:

/**
 * arch_setup_pdev_archdata - Allow manipulation of archdata before its used
 * @pdev: platform device
 *
 * This is called before platform_device_add() such that any pdev_archdata may
 * be setup before the platform_notifier is called.  So if a user needs to
 * manipulate any relevant information in the pdev_archdata they can do:
 *
 * 	platform_devic_alloc()
 * 	... manipulate ...
 * 	platform_device_add()
 *
 * And if they don't care they can just call platform_device_register() and
 * everything will just work out.
 */
void __weak arch_setup_pdev_archdata(struct platform_device *pdev)
{
}
           

这个函数目前是一个空函数,根据注释,这是留给使用者在添加设备前来操作设备相关结构体的,也就是留给用户根据需要使用的。

最后使用了platform_device_add(pdev)来添加设备。该函数位于linux-3.4\drivers\base\platform.c中:

/**
 * platform_device_add - add a platform device to device hierarchy
 * @pdev: platform device we're adding
 *
 * This is part 2 of platform_device_register(), though may be called
 * separately _iff_ pdev was allocated by platform_device_alloc().
 */
int platform_device_add(struct platform_device *pdev)
{
	int i, ret = 0;

	if (!pdev)
		return -EINVAL;

	if (!pdev->dev.parent)
		pdev->dev.parent = &platform_bus;

	<span style="color:#ff0000;">pdev->dev.bus = &platform_bus_type;</span>

	if (pdev->id != -1)
		dev_set_name(&pdev->dev, "%s.%d", pdev->name,  pdev->id);
	else
		dev_set_name(&pdev->dev, "%s", pdev->name);

	for (i = 0; i < pdev->num_resources; i++) {
		struct resource *p, *r = &pdev->resource[i];

		if (r->name == NULL)
			r->name = dev_name(&pdev->dev);

		p = r->parent;
		if (!p) {
			if (resource_type(r) == IORESOURCE_MEM)
				p = &iomem_resource;
			else if (resource_type(r) == IORESOURCE_IO)
				p = &ioport_resource;
		}

		if (p && <span style="color:#ff0000;">insert_resource(p, r)</span>) {
			printk(KERN_ERR
			       "%s: failed to claim resource %d\n",
			       dev_name(&pdev->dev), i);
			ret = -EBUSY;
			goto failed;
		}
	}

	pr_debug("Registering platform device '%s'. Parent at %s\n",
		 dev_name(&pdev->dev), dev_name(pdev->dev.parent));

	ret = <span style="color:#ff0000;">device_add(&pdev->dev);</span>
	if (ret == 0)
		return ret;

 failed:
	while (--i >= 0) {
		struct resource *r = &pdev->resource[i];
		unsigned long type = resource_type(r);

		if (type == IORESOURCE_MEM || type == IORESOURCE_IO)
			release_resource(r);
	}

	return ret;
}
EXPORT_SYMBOL_GPL(platform_device_add);
           

该函数有三个重点,一个是设备如果没有父设备,则把platform_bus设置为其父设备,一个是插入资源,还有一个是调用了device_add来添加设备。这里说明device_register和platform_device_register有很多相似之处。

下面我们回到led_init函数继续往下看驱动注册函数platform_driver_register(&led_driver),还是先看参数led_driver:

static struct platform_driver led_driver = {
	.probe		= led_probe,
	.remove		= __devexit_p(led_remove),
	.driver		= {
		.name	= "led",
		.owner	= THIS_MODULE,
	},
};
           

led_driver是一个platform_driver类型的结构体,里面主要是指向了一些操作函数。我们来看一下platform_driver结构体,其位于linux-3.4\include\linux\platform_device.h中:

struct platform_driver {
	int (*probe)(struct platform_device *);
	int (*remove)(struct platform_device *);
	void (*shutdown)(struct platform_device *);
	int (*suspend)(struct platform_device *, pm_message_t state);
	int (*resume)(struct platform_device *);
	struct device_driver driver;
	const struct platform_device_id *id_table;
};
           

该结构体主要包含了设备操作的一些函数,并且包含了device_driver结构体,用面向对象的思想说明platform_driver继承了device_driver结构体。也即是device_driver结构体派生了platform_driver结构体,device_driver是platform_driver的基类。结构体device_driver位于linux-3.4\include\linux中:

struct device_driver {
	const char		*name;
	struct bus_type		*bus;

	struct module		*owner;
	const char		*mod_name;	/* used for built-in modules */

	bool suppress_bind_attrs;	/* disables bind/unbind via sysfs */

	const struct of_device_id	*of_match_table;

	int (*probe) (struct device *dev);
	int (*remove) (struct device *dev);
	void (*shutdown) (struct device *dev);
	int (*suspend) (struct device *dev, pm_message_t state);
	int (*resume) (struct device *dev);
	const struct attribute_group **groups;

	const struct dev_pm_ops *pm;

	struct driver_private *p;
};
           

该结构体包含了设备驱动的相关数据,比如设备驱动名称,总线类型,拥有者,操作函数等等。

这里最重要的俩变量name和owner,name的主要作用是把platform驱动和对应的platform设备连接起来,在platform_device结构体里也存在name成员。只有这两个name的名称一样才能成功注册设备的驱动。owner的作用是说明驱动的所有者,通常初始化为THIS_MODULE。

我们接下来看platform设备驱动注册函数platform_driver_register,该函数位于linux-3.4\drivers\base\platform.c中:

/**
 * platform_driver_register - register a driver for platform-level devices
 * @drv: platform driver structure
 */
int platform_driver_register(struct platform_driver *drv)
{
	drv->driver.bus = &platform_bus_type;
	if (drv->probe)
		drv->driver.probe = platform_drv_probe;
	if (drv->remove)
		drv->driver.remove = platform_drv_remove;
	if (drv->shutdown)
		drv->driver.shutdown = platform_drv_shutdown;

	return driver_register(&drv->driver);
}
EXPORT_SYMBOL_GPL(platform_driver_register);
           

该函数首先声明定义自己所挂载的总线类型,这一点很重要,因为platform_driver和platform_device都是挂载到platform_bus中,platform_driver和platform_device是通过platform_bus_type中注册的回调函数platform_match来完成的,所以一定要先注册设备再注册驱动,否则无法匹配成功,驱动也就无法使用;然后给探测(probe),移除(remove),关闭(shutdown)函数指针赋值,最后使用driver_register函数进行设备的驱动注册。我们来看一下driver_register函数,其在linux-3.4\drivers\base\driver.c中:

/**
 * driver_register - register driver with bus
 * @drv: driver to register
 *
 * We pass off most of the work to the bus_add_driver() call,
 * since most of the things we have to do deal with the bus
 * structures.
 */
int driver_register(struct device_driver *drv)
{
	int ret;
	struct device_driver *other;

	BUG_ON(!drv->bus->p);

	if ((drv->bus->probe && drv->probe) ||
	    (drv->bus->remove && drv->remove) ||
	    (drv->bus->shutdown && drv->shutdown))
		printk(KERN_WARNING "Driver '%s' needs updating - please use "
			"bus_type methods\n", drv->name);

	other = driver_find(drv->name, drv->bus);
	if (other) {
		printk(KERN_ERR "Error: Driver '%s' is already registered, "
			"aborting...\n", drv->name);
		return -EBUSY;
	}

	ret = bus_add_driver(drv);
	if (ret)
		return ret;
	ret = driver_add_groups(drv, drv->groups);
	if (ret)
		bus_remove_driver(drv);
	return ret;
}
EXPORT_SYMBOL_GPL(driver_register);
           

首先如果总线的方法和设备自己的方法同时存在,则打印警告信息。如果设备驱动已经注册,则返回-EBUSY,否则使用bus_add_driver(drv)向总线添加驱动。

下面来看一下bus_add_driver函数,这个函数位于linux-3.4\drivers\base\bus.c中:

/**
 * bus_add_driver - Add a driver to the bus.
 * @drv: driver.
 */
int bus_add_driver(struct device_driver *drv)
{
	struct bus_type *bus;
	struct driver_private *priv;
	int error = 0;

	bus = bus_get(drv->bus);
	if (!bus)
		return -EINVAL;

	pr_debug("bus: '%s': add driver %s\n", bus->name, drv->name);

	priv = kzalloc(sizeof(*priv), GFP_KERNEL);
	if (!priv) {
		error = -ENOMEM;
		goto out_put_bus;
	}
	klist_init(&priv->klist_devices, NULL, NULL);
	priv->driver = drv;
	drv->p = priv;
	priv->kobj.kset = bus->p->drivers_kset;
	error = kobject_init_and_add(&priv->kobj, &driver_ktype, NULL,
				     "%s", drv->name);
	if (error)
		goto out_unregister;

	<span style="color:#ff0000;">if (drv->bus->p->drivers_autoprobe) {
		error = driver_attach(drv);
		if (error)
			goto out_unregister;
	}</span>
	klist_add_tail(&priv->knode_bus, &bus->p->klist_drivers);
	module_add_driver(drv->owner, drv);

	error = driver_create_file(drv, &driver_attr_uevent);
	if (error) {
		printk(KERN_ERR "%s: uevent attr (%s) failed\n",
			__func__, drv->name);
	}
	error = driver_add_attrs(bus, drv);
	if (error) {
		/* How the hell do we get out of this pickle? Give up */
		printk(KERN_ERR "%s: driver_add_attrs(%s) failed\n",
			__func__, drv->name);
	}

	if (!drv->suppress_bind_attrs) {
		error = add_bind_files(drv);
		if (error) {
			/* Ditto */
			printk(KERN_ERR "%s: add_bind_files(%s) failed\n",
				__func__, drv->name);
		}
	}

	kobject_uevent(&priv->kobj, KOBJ_ADD);
	return 0;

out_unregister:
	kobject_put(&priv->kobj);
	kfree(drv->p);
	drv->p = NULL;
out_put_bus:
	bus_put(bus);
	return error;
}
           

从上面的红线部分,如果驱动是自动probe的话,将调用driver_attach来绑定设备和驱动。函数driver_attach位于linux-3.4\drivers\base\dd.c中:

/**
 * driver_attach - try to bind driver to devices.
 * @drv: driver.
 *
 * Walk the list of devices that the bus has on it and try to
 * match the driver with each one.  If driver_probe_device()
 * returns 0 and the @dev->driver is set, we've found a
 * compatible pair.
 */
int driver_attach(struct device_driver *drv)
{
	return bus_for_each_dev(drv->bus, NULL, drv, __driver_attach);
}
EXPORT_SYMBOL_GPL(driver_attach);
           

这里可以看到,调用了bus_for_each_dev函数,该函数位于linux-3.4\drivers\based\bus.c中:

/**
 * bus_for_each_dev - device iterator.
 * @bus: bus type.
 * @start: device to start iterating from.
 * @data: data for the callback.
 * @fn: function to be called for each device.
 *
 * Iterate over @bus's list of devices, and call @fn for each,
 * passing it @data. If @start is not NULL, we use that device to
 * begin iterating from.
 *
 * We check the return of @fn each time. If it returns anything
 * other than 0, we break out and return that value.
 *
 * NOTE: The device that returns a non-zero value is not retained
 * in any way, nor is its refcount incremented. If the caller needs
 * to retain this data, it should do so, and increment the reference
 * count in the supplied callback.
 */
int bus_for_each_dev(struct bus_type *bus, struct device *start,
		     void *data, int (*fn)(struct device *, void *))
{
	struct klist_iter i;
	struct device *dev;
	int error = 0;

	if (!bus || !bus->p)
		return -EINVAL;

	klist_iter_init_node(&bus->p->klist_devices, &i,
			     (start ? &start->p->knode_bus : NULL));
	while ((dev = next_device(&i)) && !error)
		error = fn(dev, data);
	klist_iter_exit(&i);
	return error;
}
EXPORT_SYMBOL_GPL(bus_for_each_dev);
           

这里可以发现该函数是遍历总线上的每一个设备,并调用了函数fn,,这里的fn函数就是__driver__attach函数。我们来看一下__driver__attach函数,该函数位于linux-3.4\drivers\base\dd.c中:

static int __driver_attach(struct device *dev, void *data)
{
	struct device_driver *drv = data;

	/*
	 * Lock device and try to bind to it. We drop the error
	 * here and always return 0, because we need to keep trying
	 * to bind to devices and some drivers will return an error
	 * simply if it didn't support the device.
	 *
	 * driver_probe_device() will spit a warning if there
	 * is an error.
	 */

	if (!driver_match_device(drv, dev))
		return 0;

	if (dev->parent)	/* Needed for USB */
		device_lock(dev->parent);
	device_lock(dev);
	if (!dev->driver)
		<span style="color:#ff0000;">driver_probe_device(drv, dev);</span>
	device_unlock(dev);
	if (dev->parent)
		device_unlock(dev->parent);

	return 0;
}
           

这里首先是driver 匹配device,然后调用了driver_probe_device函数,该函数位于linux-3.4\drivers\base\dd.c中:

/**
 * driver_probe_device - attempt to bind device & driver together
 * @drv: driver to bind a device to
 * @dev: device to try to bind to the driver
 *
 * This function returns -ENODEV if the device is not registered,
 * 1 if the device is bound successfully and 0 otherwise.
 *
 * This function must be called with @dev lock held.  When called for a
 * USB interface, @dev->parent lock must be held as well.
 */
int driver_probe_device(struct device_driver *drv, struct device *dev)
{
	int ret = 0;

	if (!device_is_registered(dev))
		return -ENODEV;

	pr_debug("bus: '%s': %s: matched device %s with driver %s\n",
		 drv->bus->name, __func__, dev_name(dev), drv->name);

	pm_runtime_get_noresume(dev);
	pm_runtime_barrier(dev);
	ret =<span style="color:#ff0000;"> really_probe(dev, drv);</span>
	pm_runtime_put_sync(dev);

	return ret;
}
           

这里首先检测了设备是否被注册,然后调用了really_probe函数,这个函数位于linux-3.4\drivers\base\dd.c中:

static int really_probe(struct device *dev, struct device_driver *drv)
{
	int ret = 0;

	atomic_inc(&probe_count);
	pr_debug("bus: '%s': %s: probing driver %s with device %s\n",
		 drv->bus->name, __func__, drv->name, dev_name(dev));
	WARN_ON(!list_empty(&dev->devres_head));

	dev->driver = drv;
	if (driver_sysfs_add(dev)) {
		printk(KERN_ERR "%s: driver_sysfs_add(%s) failed\n",
			__func__, dev_name(dev));
		goto probe_failed;
	}

	if (dev->bus->probe) {
		ret = dev->bus->probe(dev);
		if (ret)
			goto probe_failed;
	} else if (drv->probe) {
		<span style="color:#ff0000;">ret = drv->probe(dev);</span>
		if (ret)
			goto probe_failed;
	}

	driver_bound(dev);
	ret = 1;
	pr_debug("bus: '%s': %s: bound device %s to driver %s\n",
		 drv->bus->name, __func__, dev_name(dev), drv->name);
	goto done;

probe_failed:
	devres_release_all(dev);
	driver_sysfs_remove(dev);
	dev->driver = NULL;

	if (ret == -EPROBE_DEFER) {
		/* Driver requested deferred probing */
		dev_info(dev, "Driver %s requests probe deferral\n", drv->name);
		driver_deferred_probe_add(dev);
	} else if (ret != -ENODEV && ret != -ENXIO) {
		/* driver matched but the probe failed */
		printk(KERN_WARNING
		       "%s: probe of %s failed with error %d\n",
		       drv->name, dev_name(dev), ret);
	} else {
		pr_debug("%s: probe of %s rejects match %d\n",
		       drv->name, dev_name(dev), ret);
	}
	/*
	 * Ignore errors returned by ->probe so that the next driver can try
	 * its luck.
	 */
	ret = 0;
done:
	atomic_dec(&probe_count);
	wake_up(&probe_waitqueue);
	return ret;
}
           

这里调用了drv->probe(dev),而这个就是我们定义platform_driver结构体里声明的probe函数,在驱动led.c中就是函数led_probe函数:

//led_probe
static int __devinit led_probe(struct platform_device *pdev)
{
	int led_used;
	script_item_u	val;
	script_item_value_type_e  type;
	
	int err;
	
    printk("led_para!\n");
	type = script_get_item("led_para", "led_used", &val);
	if (SCIRPT_ITEM_VALUE_TYPE_INT != type) {
		printk("%s script_get_item \"led_para\" led_used = %d\n",
				__FUNCTION__, val.val);
		return -1;
	}
	led_used = val.val;
	printk("%s script_get_item \"led_para\" led_used = %d\n",
				__FUNCTION__, val.val);

	if(!led_used) {
		printk("%s led_used is not used in config,  led_used=%d\n", __FUNCTION__,led_used);
		return -1;
	}

	err = led_gpio();
	if (err)
		return -1;

	sema_init(&lock, 1);
	err = misc_register(&leds_dev);
	printk("======= cqa83 led initialized ================\n");
	
	return err;
}
           

到这里,platform设备的设备和驱动初始化和绑定,探测就结束了,其实也意味着驱动已经设备和注册成功了。

我觉得有一点还是要说一下,那就是设备和驱动的匹配,在驱动注册是会回调总线注册的匹配函数platform_match,该函数位于linux-3.4\drivers\base\platform.c中:

/**
 * platform_match - bind platform device to platform driver.
 * @dev: device.
 * @drv: driver.
 *
 * Platform device IDs are assumed to be encoded like this:
 * "<name><instance>", where <name> is a short description of the type of
 * device, like "pci" or "floppy", and <instance> is the enumerated
 * instance of the device, like '0' or '42'.  Driver IDs are simply
 * "<name>".  So, extract the <name> from the platform_device structure,
 * and compare it against the name of the driver. Return whether they match
 * or not.
 */
static int platform_match(struct device *dev, struct device_driver *drv)
{
	struct platform_device *pdev = to_platform_device(dev);
	struct platform_driver *pdrv = to_platform_driver(drv);

	/* Attempt an OF style match first */
	if (of_driver_match_device(dev, drv))
		return 1;

	/* Then try to match against the id table */
	if (pdrv->id_table)
		return platform_match_id(pdrv->id_table, pdev) != NULL;

	/* fall-back to driver name match */
	<span style="color:#ff0000;">return (strcmp(pdev->name, drv->name) == 0);</span>
}
           

这里的匹配就是通过字符串对比来进行的,这就是开始说的platform_device的name成员和platform_driver的name成员要一样。

在这里简单总结一下,platform设备加载驱动的过程。首先有一个platform总线,这个总线呢会在系统初始化的时候对其进行初始化。在总线初始化完成之后,如果你想要往总线上挂载platform设备,那么这个要分为两部分,一是设备,二是驱动,也即是片platform_device和platform_driver,这两个都是要挂载到platform总线上。但是挂载有一个顺序,一定要先挂载设备,再挂载驱动,因为驱动是遍历总线上所有的设备节点来匹配的。那么这俩东西靠什么来匹配呢?他们靠的是其结构体下的name成员变量,如果名字一样才能匹配成功,这也就是为什么要求platform_device和platform_driver的名字要一样的原因了。

platform_device结构体提供的是资源,而platform_driver结构体提供的是操作,也就是驱动操作设备。platform_driver主要完成了设备的注册和初始化,还有移除是的资源释放等。在驱动led.c中很容易可以看出来,led_probe调用了led_gpio函数。到platform设备驱动加载完成,其实是在目录/dev/platform下会出现你的设备。然而这并不能做什么,但是Linux里有一句话“一切皆文件”,设备也是文件。那么这些完成之后,下面就是文件操作了。

一个问题是,我们的应用程序如何去使用驱动程序中的函数?比如打开设备,关闭设备,使用设备等等。这里就是说对应用程序来说需要一个入口,一个可以通过驱动程序控制设备的入口。这里就引入了一个重要的数据结构file_operrations,这个结构体包含了一组函数指针,这些指针所指向的函数就是用来操作设备的。

这个结构体位于linux-3.4\include\linux\fs.h中:

struct file_operations {
	struct module *owner;
	loff_t (*llseek) (struct file *, loff_t, int);
	ssize_t (*read) (struct file *, char __user *, size_t, loff_t *);
	ssize_t (*write) (struct file *, const char __user *, size_t, loff_t *);
	ssize_t (*aio_read) (struct kiocb *, const struct iovec *, unsigned long, loff_t);
	ssize_t (*aio_write) (struct kiocb *, const struct iovec *, unsigned long, loff_t);
	int (*readdir) (struct file *, void *, filldir_t);
	unsigned int (*poll) (struct file *, struct poll_table_struct *);
	long (*unlocked_ioctl) (struct file *, unsigned int, unsigned long);
	long (*compat_ioctl) (struct file *, unsigned int, unsigned long);
	int (*mmap) (struct file *, struct vm_area_struct *);
	int (*open) (struct inode *, struct file *);
	int (*flush) (struct file *, fl_owner_t id);
	int (*release) (struct inode *, struct file *);
	int (*fsync) (struct file *, loff_t, loff_t, int datasync);
	int (*aio_fsync) (struct kiocb *, int datasync);
	int (*fasync) (int, struct file *, int);
	int (*lock) (struct file *, int, struct file_lock *);
	ssize_t (*sendpage) (struct file *, struct page *, int, size_t, loff_t *, int);
	unsigned long (*get_unmapped_area)(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
	int (*check_flags)(int);
	int (*flock) (struct file *, int, struct file_lock *);
	ssize_t (*splice_write)(struct pipe_inode_info *, struct file *, loff_t *, size_t, unsigned int);
	ssize_t (*splice_read)(struct file *, loff_t *, struct pipe_inode_info *, size_t, unsigned int);
	int (*setlease)(struct file *, long, struct file_lock **);
	long (*fallocate)(struct file *file, int mode, loff_t offset,
			  loff_t len);
};
           

那么我们来对比一下驱动代码led.c中的file_operations结构体:

//file_operations
static struct file_operations leds_ops = {
	.owner			= THIS_MODULE,
	.open			= led_open,
	.release		= led_close, 
	.unlocked_ioctl		= led_ioctl,
};
           

这里只定义了open函数,release函数,unlocked_ioctl函数,并且定义了其拥有者是THIS_MODULE。这几个函数的源代码分别是:

//led_open
static int led_open(struct inode *inode, struct file *file)
{
	if (!down_trylock(&lock))
		return 0;
	else
		return -EBUSY;
}
           

led_open函数是开始时对设备加锁,防止多应用程序访问。

//led_close
static int  led_close(struct inode *inode, struct file *file)
{
	up(&lock);
	return 0;
}
           

led_close函数是设备使用完之后对设备进行解锁方便其他程序使用。

//led_ioctl
static long  led_ioctl(struct file *filep, unsigned int cmd,
		unsigned long arg)
{
	unsigned int n;
	n = (unsigned int)arg;
	switch (cmd) {
		case LED_IOCTL_SET_ON:
			if (n < 1)
				return -EINVAL;
			if(led_val[n-1].gpio.gpio != -1) {
				__gpio_set_value(led_val[n-1].gpio.gpio, 1);
				printk("led%d on !\n", n);
			}
			break;

		case LED_IOCTL_SET_OFF:
		default:
			if (n < 1)
				return -EINVAL;
			if(led_val[n-1].gpio.gpio != -1) {
				__gpio_set_value(led_val[n-1].gpio.gpio, 0);
				printk("led%d off !\n", n);
			}
			break;
	}

	return 0;
}
           

led_ioctl里面主要是对设备的控制,这个在前面已经分析过了,这里不再进行分析。

到此呢,驱动也加载了,应用程序也有了入口,但是还有一个重要问题没有说,那就是它是何时加载到驱动的呢?

我们知道Linux系统驱动加载一般是两种方式,一个是编译成ko模块加载,一个是编译进内核,系统启动时自动加载。模块加载有两种方式,一个是手动加载,一个是使用脚本在系统启动时加载,但是这两种方式都会使用到mknod,insmod命令等。

那么这里是怎么加载的呢?我们先查看其系统启动的配置文件init.sun8i.rc,里面关于led的启动设置是这样的

# led
    chmod 777 /dev/led
           

而不像lcd,lcd是这样的:

# lcd 
    insmod /system/vendor/modules/disp.ko
    insmod /system/vendor/modules/hdmi.ko
           

led的配置并没有使用到insmod名令,并且在Android设备中也找不到其相应的ko文件。所以说这个led驱动应该是静态编译进内核的。一般字符驱动设备静态编译进内核都会在相应的makefile中加入mknod命令来创建节点。那么我们就去led.c对应的makefile中找一下:

然而其关于led的只有:

obj-$(CONFIG_SUNXI_LED)		+= led.o
           

并没有mknod命令。那这到底是咋回事呢?

其实我们再回到led.c代码中的led_probe函数:

//led_probe
static int __devinit led_probe(struct platform_device *pdev)
{
	int led_used;
	script_item_u	val;
	script_item_value_type_e  type;
	
	int err;
	
    printk("led_para!\n");
	type = script_get_item("led_para", "led_used", &val);
	if (SCIRPT_ITEM_VALUE_TYPE_INT != type) {
		printk("%s script_get_item \"led_para\" led_used = %d\n",
				__FUNCTION__, val.val);
		return -1;
	}
	led_used = val.val;
	printk("%s script_get_item \"led_para\" led_used = %d\n",
				__FUNCTION__, val.val);

	if(!led_used) {
		printk("%s led_used is not used in config,  led_used=%d\n", __FUNCTION__,led_used);
		return -1;
	}

	err = led_gpio();
	if (err)
		return -1;

	sema_init(&lock, 1);
	<span style="background-color: rgb(255, 0, 0);">err = misc_register(&leds_dev);</span>
	printk("======= cqa83 led initialized ================\n");
	
	return err;
}
           

来看红色的部分,再看参数leds_dev:

//miscdevice
static struct miscdevice leds_dev = {
	.minor = MISC_DYNAMIC_MINOR,
	.name = "led",
	.fops = &leds_ops,
};
           

到这里是否明白了呢?

这个led设备驱动呢是一个杂项字符驱动,这就是我开始说的那三点中的一点。那这个有什么关系呢?

misc_device是特殊字符设备。注册驱动程序时采用misc_register函数注册,此函数中会自动创建设备节点,即设备文件。无需mknod指令创建设备文件。

因为misc_register()会调用class_device_creat或者device_creat().

关于杂项字符设备网上有很多资料,大家可以查一下。我会在后面的博文中写一篇来说杂项字符设备。

到这里我们解决了没有mknod的疑问,但是我们是如何配置才能把驱动编译进内核呢?

可以这样做,在内核源代码目录下执行make menuconfig命令,这会弹出一个对话界面。找到对应的驱动,然后用空格把前面的尖括号里变为*号,然后保存退出。编译系统就可以了。由于我的电脑不能截屏,就不能给大家上图了,抱歉。不过网上有很多资料。我下面会给出连接。

到这里这个驱动的分析基本上就完成了。但是还有俩问题需要另外来写一下,一个是LinuxGPIO驱动模型,一个是杂项字符设备。

我参考了很多网上朋友的作品,但是由于这个文章写了好多天,可能有的连接没有及时保存,在这里表示抱歉,也在此表示真心的感谢,感谢大家的分享:

http://blog.csdn.net/chocolate001/article/details/7572203

http://blog.csdn.net/zjg555543/article/details/7420650

http://blog.sina.com.cn/s/blog_966f8e8501010xhw.html

http://www.cnblogs.com/geneil/archive/2011/12/03/2272869.html

http://www.cnblogs.com/myblesh/articles/2367520.html

http://www.embedu.org/Column/Column425.htm

http://blog.csdn.net/weiqing1981127/article/details/8245665

http://blog.csdn.net/liuhaoyutz/article/details/15504127

http://blog.csdn.net/qingfengtsing/article/details/19211021

http://blog.chinaunix.net/uid-26285146-id-3307147.html

http://blog.csdn.net/chocolate001/article/details/7572203

http://blog.csdn.net/gdt_a20/article/details/6429451

http://blog.chinaunix.net/uid-20729605-id-1884305.html

http://www.51hei.com/bbs/dpj-30117-1.html

http://blog.chinaunix.net/uid-20729605-id-1884305.html

http://blog.csdn.net/abo8888882006/article/details/5424363

http://blog.csdn.net/engerled/article/details/6237884

http://blog.csdn.net/cppgp/article/details/6333359

http://blog.csdn.net/engerled/article/details/6243891

http://blog.csdn.net/cug_fish_2009/article/details/6518856

http://blog.sina.com.cn/s/blog_7943319e01018m3w.html

http://blog.chinaunix.net/uid-26694208-id-3128890.html

http://www.cnblogs.com/Daniel-G/archive/2013/08/27/3284791.html

http://blog.chinaunix.net/uid-20769502-id-147170.html

等等。

再次表示感谢!

继续阅读