How Many Fibs?
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 6639 Accepted Submission(s): 2627
Problem Description Recall the definition of the Fibonacci numbers:
f1 := 1
f2 := 2
fn := fn-1 + fn-2 (n >= 3)
Given two numbers a and b, calculate how many Fibonacci numbers are in the range [a, b].
Input The input contains several test cases. Each test case consists of two non-negative integer numbers a and b. Input is terminated by a = b = 0. Otherwise, a <= b <= 10^100. The numbers a and b are given with no superfluous leading zeros.
Output For each test case output on a single line the number of Fibonacci numbers fi with a <= fi <= b.
Sample Input
10 100
1234567890 9876543210
0 0
Sample Output
5
4
Source University of Ulm Local Contest 2000
Recommend Eddy (题目转自HDU http://acm.hdu.edu.cn/showproblem.php?pid=1316)
解题思路
在这里我觉得核心的知识是大数加法(前面我有一篇大菲波数的文章~如果有兴趣也可以看一下哦~)
然后我觉得比较有趣的就是大数之间应该怎么比较大小?
我的思路本来是想重载一下运算符。。。。。。但是我目前还没有学到,所以我定义了两个新函数
largerTA(larger than A的简称)和smallerTB(smaller than B)
但其实根据题目应该是不小于不大于。。。。。。没关系,核心的东西没有错。
首先我们要明确一个概念,大数是一个字符串,所以我们比较大小,首先可以从字符串长度开始入手
如果字符串A长度比字符串B的长度要长,那么肯定会A大,反之同理。
如果字符串A的长度和字符串B的长度一样长,那么我们就可以直接用>,<,>=,<=这样的符号来判断,这样子的判断依据是,
从第一位开始判断,根据ascii码判断,看哪个比较大,如果一样,则不断的向后一位一位比较。(这里好像其实也是用到了运算符重载,不过是前辈们已经写好的了)
核心代码
bool largerTA(string a,string b)
{
if(b.size()>a.size())
return true;
if(b.size()<a.size())
return false;
if(b.size()==a.size())
{
if(b>=a)
return true;
else
return false;
}
}
bool smallerTB(string a,string b)
{
if(a.size()<b.size())
return true;
if(a.size()>b.size())
return false;
if(b.size()==a.size())
{
if(a<=b)
return true;
else
return false;
}
}
代码展示
#include<iostream>
#include<string>
using namespace std;
string add(string s1,string s2)
{
string s;
int len1=s1.size();
int len2=s2.size();
int sum=;
int flag=;
while(len1>=&&len2>=)
{
sum=flag+s1[len1]-'0'+s2[len2]-'0';
s=s+char(sum%+'0');
flag=sum/;
len1--;
len2--;
}
while(len1>=)
{
sum=flag+s1[len1]-'0';
s=s+char(sum%+'0');
flag=sum/;
len1--;
}
while(len2>=)
{
sum=flag+s2[len1]-'0';
s=s+char(sum%+'0');
flag=sum/;
len2--;
}
if(flag>)
{
s=s+char(flag+'0');
}
//s转置
char tmp=' ';
int end=s.size();
for(int i=;i<end/;i++)
{
tmp=s[i];
s[i]=s[s.size()-i];
s[s.size()-i]=tmp;
}
return s;
}
bool largerTA(string a,string b)
{
if(b.size()>a.size())
return true;
if(b.size()<a.size())
return false;
if(b.size()==a.size())
{
if(b>=a)
return true;
else
return false;
}
}
bool smallerTB(string a,string b)
{
if(a.size()<b.size())
return true;
if(a.size()>b.size())
return false;
if(b.size()==a.size())
{
if(a<=b)
return true;
else
return false;
}
}
int main()
{
string a;
string b;
string s[];
s[]="0";
s[]="1";
while(cin>>a)
{
int sum=;
cin>>b;
if(a=="0"&&b=="0")
break;
else
{
for(int i=;;i++)
{
s[i]=add(s[i],s[i]);
if(largerTA(a,s[i])&&smallerTB(s[i],b))
sum++;
if(!smallerTB(s[i],b))
break;
}
}
cout<<sum<<endl;
}
}