1,均衡化的理解:
我们拍摄或扫描的照片往往会由于光线太强或太弱,使图像对比度减弱,细节分辨不清。这样的图像直方图灰度往往都集中在某一色阶范围之内,我们需要将这些灰度拉伸到整个灰度级上,并使它们在直方图中均匀的分布,以达到增强图像的目的,这样我们就引入了图片的均衡化,以达到亮度的均衡化。
2,代码实现灰度图的均衡化:
import cv2
import numpy as np
import matplotlib.pyplot as plt
img = cv2.imread('image0.jpg',1)
imgInfo = img.shape
height = imgInfo[0]
width = imgInfo[1]
gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
cv2.imshow('src',gray)
count = np.zeros(256,np.float)
for i in range(0,height):
for j in range(0,width):
pixel = gray[i,j]
index = int(pixel)
count[index] = count[index]+1
for i in range(0,255):
count[i] = count[i]/(height*width)
#计算累计概率
sum1 = float(0)
for i in range(0,256):
sum1 = sum1+count[i]
count[i] = sum1
#print(count)
# 计算映射表
map1 = np.zeros(256,np.uint16)
for i in range(0,256):
map1[i] = np.uint16(count[i]*255)
# 映射
for i in range(0,height):
for j in range(0,width):
pixel = gray[i,j]
gray[i,j] = map1[pixel]
cv2.imshow('dst',gray)
cv2.waitKey(0)
实现结果和原图对比如下:

3,彩色图的均衡化代码实现:
import cv2
import numpy as np
import matplotlib.pyplot as plt
img = cv2.imread('image0.jpg',1)
cv2.imshow('src',img)
imgInfo = img.shape
height = imgInfo[0]
width = imgInfo[1]
count_b = np.zeros(256,np.float)
count_g = np.zeros(256,np.float)
count_r = np.zeros(256,np.float)
for i in range(0,height):
for j in range(0,width):
(b,g,r) = img[i,j]
index_b = int(b)
index_g = int(g)
index_r = int(r)
count_b[index_b] = count_b[index_b]+1
count_g[index_g] = count_g[index_g]+1
count_r[index_r] = count_r[index_r]+1
for i in range(0,255):
count_b[i] = count_b[i]/(height*width)
count_g[i] = count_g[i]/(height*width)
count_r[i] = count_r[i]/(height*width)
#计算累计概率
sum_b = float(0)
sum_g = float(0)
sum_r = float(0)
for i in range(0,256):
sum_b = sum_b+count_b[i]
sum_g = sum_g+count_g[i]
sum_r = sum_r+count_r[i]
count_b[i] = sum_b
count_g[i] = sum_g
count_r[i] = sum_r
#print(count)
# 计算映射表
map_b = np.zeros(256,np.uint16)
map_g = np.zeros(256,np.uint16)
map_r = np.zeros(256,np.uint16)
for i in range(0,256):
map_b[i] = np.uint16(count_b[i]*255)
map_g[i] = np.uint16(count_g[i]*255)
map_r[i] = np.uint16(count_r[i]*255)
# 映射
dst = np.zeros((height,width,3),np.uint8)
for i in range(0,height):
for j in range(0,width):
(b,g,r) = img[i,j]
b = map_b[b]
g = map_g[g]
r = map_r[r]
dst[i,j] = (b,g,r)
cv2.imshow('dst',dst)
cv2.waitKey(0)
实现结果如下: