1.先序遍历:根节点->左子树->右子树
先序打印二叉树(递归)
def preOrderTraverse(node): if node is None: return None print(node.val) preOrderTraverse(node.left) preOrderTraverse(node.right)
先序打印二叉树(非递归)
def preOrderTravese(node): stack = [node] while len(stack) > 0: print(node.val) if node.right is not None: stack.append(node.right) if node.left is not None: stack.append(node.left) node = stack.pop()
2.中序遍历:左子树->根节点->右子树
中序打印二叉树(递归)
def inOrderTraverse(node): if node is None: return None inOrderTraverse(node.left) print(node.val) inOrderTraverse(node.right)
中序打印二叉树(非递归)
def inOrderTraverse(node): stack = [] pos = node while pos is not None or len(stack) > 0: if pos is not None: stack.append(pos) pos = pos.left else: pos = stack.pop() print(pos.val) pos = pos.right
Lecode上题目:
验证二叉搜索树
给定一个二叉树,判断其是否是一个有效的二叉搜索树。
假设一个二叉搜索树具有如下特征:
- 节点的左子树只包含小于当前节点的数。
- 节点的右子树只包含大于当前节点的数。
- 所有左子树和右子树自身必须也是二叉搜索树。
树的中序遍历实现:
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, x):
# self.val = x
# self.left = None
# self.right = None
class Solution:
def isValidBST(self, root: TreeNode) -> bool:
stack = []
pos = root
pre = cur = None
while pos !=None or len(stack) > 0:
if pos!= None:
stack.append(pos)
pos = pos.left
else:
pos = stack.pop()
if pre == None:
pre = pos.val
else:
cur = pos.val
if cur <= pre:
return False
else:
pre = cur
pos = pos.right
return True
3.后序遍历:左子树->右子树->根节点
后序打印二叉树(递归)
def postOrderTraverse(node):
if node is None:
return None
postOrderTraverse(node.left)
postOrderTraverse(node.right)
print(node.val)
# 后序打印二叉树(非递归)
# 使用两个栈结构
# 第一个栈进栈顺序:左节点->右节点->跟节点
# 第一个栈弹出顺序: 跟节点->右节点->左节点(先序遍历栈弹出顺序:跟->左->右)
# 第二个栈存储为第一个栈的每个弹出依次进栈
# 最后第二个栈依次出栈
def postOrderTraverse(node): stack = [node] stack2 = [] while len(stack) > 0: node = stack.pop() stack2.append(node) if node.left is not None: stack.append(node.left) if node.right is not None: stack.append(node.right) while len(stack2) > 0: print(stack2.pop().val)
4.按层遍历:从上到下、从左到右按层遍历
先进先出选用队列结构
import queue def layerTraverse(head): if not head: return None que = queue.Queue() # 创建先进先出队列 que.put(head) while not que.empty(): head = que.get() # 弹出第一个元素并打印 print(head.val) if head.left: # 若该节点存在左子节点,则加入队列(先push左节点) que.put(head.left) if head.right: # 若该节点存在右子节点,则加入队列(再push右节点) que.put(head.right)
5.二叉树节点个数
def treeNodenums(node): if node is None: return 0 nums = treeNodenums(node.left) nums += treeNodenums(node.right) return nums + 1
6.二叉树的最大深度
def bTreeDepth(node): if node is None: return 0 ldepth = bTreeDepth(node.left) rdepth = bTreeDepth(node.right) return (max(ldepth, rdepth) + 1)