原题网址:https://leetcode.com/problems/verify-preorder-sequence-in-binary-search-tree/
Given an array of numbers, verify whether it is the correct preorder traversal sequence of a binary search tree.
You may assume each number in the sequence is unique.
Follow up:
Could you do it using only constant space complexity?
方法一:分治策略,根据二叉搜索树的特性,分别寻找匹配当前节点的左子树和右子树。需要使用递归。
public class Solution {
private int range(int[] preorder, int from, int min, int max) {
if (from == preorder.length) return from;
if (preorder[from] < min || preorder[from] > max) return from;
int small = range(preorder, from+1, min, preorder[from]-1);
int great = range(preorder, small, preorder[from]+1, max);
return great;
}
public boolean verifyPreorder(int[] preorder) {
if (preorder == null || preorder.length <= 1) return true;
int small = range(preorder, 1, Integer.MIN_VALUE, preorder[0]-1);
int great = range(preorder, small, preorder[0]+1, Integer.MAX_VALUE);
return great == preorder.length;
}
}
代码参考:http://my.oschina.net/u/922297/blog/498356
方法二:前序遍历的特点,是节点遍历先减后增,减的时候可以随意减少,但开始增加的时候,表明正在右子树,则往后的任何值都不能小于当前节点的值。

public class Solution {
public boolean verifyPreorder(int[] preorder) {
Stack<Integer> stack = new Stack<>();
int min = Integer.MIN_VALUE;
for(int node: preorder) {
if (node < min) return false;
while (!stack.isEmpty() && stack.peek() < node) min = stack.pop();
stack.push(node);
}
return true;
}
}
如果允许我们修改来源数据的话,就可以使用preorder作为栈,而不需要额外分配空间:
public class Solution {
public boolean verifyPreorder(int[] preorder) {
int size = 0;
int min = Integer.MIN_VALUE;
for(int node: preorder) {
if (node < min) return false;
while (size > 0 && preorder[size-1] < node) min = preorder[--size];
preorder[size++] = node;
}
return true;
}
}
但原理是一样的。
参考文章:https://segmentfault.com/a/1190000003874375