天天看点

Pandas进阶修炼120题|当Pandas遇上NumPy

本文接着更新Pandas进阶修炼120题,Pandas的强大不仅仅因为它自身的强大,更在于当它和NumPy、Matplotlib、Sklearn等库结合使用时发挥的巨大威力,本期就挑选了一些Pandas+NumPy相关的题目供各位读者练习,如果感兴趣,请一定要敲一遍代码。

81

数据查看

题目:导入并查看pandas与numpy版本

难度:⭐

答案

import pandas as pd
import numpy as np
print(np.__version__)
print(pd.__version__)           

复制

82

数据创建

题目:从NumPy数组创建DataFrame

难度:⭐

备注

使用numpy生成20个0-100随机数

答案

tem = np.random.randint(1,100,20)
df1 = pd.DataFrame(tem)           

复制

83

数据创建

题目:从NumPy数组创建DataFrame

难度:⭐

备注

使用numpy生成20个0-100固定步长的数

答案

tem = np.arange(0,100,5)
df2 = pd.DataFrame(tem)           

复制

84

数据创建

题目:从NumPy数组创建DataFrame

难度:⭐

备注

使用numpy生成20个指定分布(如标准正态分布)的数

答案

tem = np.random.normal(0, 1, 20)
df3 = pd.DataFrame(tem)           

复制

85

数据创建

题目:将df1,df2,df3按照行合并为新DataFrame

难度:⭐⭐

答案

df = pd.concat([df1,df2,df3],axis=0,ignore_index=True)           

复制

86

数据创建

题目:将df1,df2,df3按照列合并为新DataFrame

难度:⭐⭐

期望结果

0 1 2
0 95 0 0.022492
1 22 5 -1.209494
2 3 10 0.876127
3 21 15 -0.162149
4 51 20 -0.815424
5 30 25 -0.303792
...............           

复制

答案

df = pd.concat([df1,df2,df3],axis=1,ignore_index=True)
df           

复制

87

数据查看

题目:查看df所有数据的最小值、25%分位数、中位数、75%分位数、最大值

难度:⭐⭐

答案

print(np.percentile(df, q=[0, 25, 50, 75, 100]))           

复制

88

数据修改

题目:修改列名为col1,col2,col3

难度:⭐

答案

df.columns = ['col1','col2','col3']           

复制

89

数据提取

题目:提取第一列中不在第二列出现的数字

难度:⭐⭐⭐

答案

df['col1'][~df['col1'].isin(df['col2'])]           

复制

90

数据提取

题目:提取第一列和第二列出现频率最高的三个数字

难度:⭐⭐⭐

答案

temp = df['col1'].append(df['col2'])
temp.value_counts().index[:3]           

复制

91

数据提取

题目:提取第一列中可以整除5的数字位置

难度:⭐⭐⭐

答案

np.argwhere(df['col1'] % 5==0)           

复制

92

数据计算

题目:计算第一列数字前一个与后一个的差值

难度:⭐⭐

答案

df['col1'].diff().tolist()           

复制

93

数据处理

题目:将col1,col2,clo3三列顺序颠倒

难度:⭐⭐

答案

df.ix[:, ::-1]           

复制

94

数据提取

题目:提取第一列位置在1,10,15的数字

难度:⭐⭐

答案

df['col1'].take([1,10,15])           

复制

95

数据查找

题目:查找第一列的局部最大值位置

难度:⭐⭐⭐⭐

备注

即比它前一个与后一个数字的都大的数字

答案

tem = np.diff(np.sign(np.diff(df['col1'])))
np.where(tem == -2)[0] + 1           

复制

96

数据计算

题目:按行计算df的每一行均值

难度:⭐⭐

答案

df[['col1','col2','col3']].mean(axis=1)           

复制

97

数据计算

题目:对第二列计算移动平均值

难度:⭐⭐⭐

备注

每次移动三个位置,不可以使用自定义函数

答案

np.convolve(df['col2'], np.ones(3)/3, mode='valid')           

复制

98

数据修改

题目:将数据按照第三列值的大小升序排列

难度:⭐⭐

答案

df.sort_values("col3",inplace=True)           

复制

99

数据修改

题目:将第一列大于50的数字修改为'高'

难度:⭐⭐

答案

df.col1[df['col1'] > 50]= '高'           

复制

100

数据计算

题目:计算第一列与第二列之间的欧式距离

难度:⭐⭐⭐

备注

不可以使用自定义函数

答案

np.linalg.norm(df['col1']-df['col2'])           

复制