天天看点

DCGAN实战

建立神经网络

我们将通过部署以下函数来建立GANs的主要部分

  • model_input
  • discirminator
  • generator
  • model_loss
  • model_opt
  • train

DCGAN实战

Input

def model_inputs(image_width, image_height, image_channels, z_dim):
    """
    Create the model inputs
    :param image_width: The input image width
    :param image_height: The input image height
    :param image_channels: The number of image channels
    :param z_dim: The dimension of Z
    :return: Tuple of (tensor of real input images, tensor of z data, learning rate)
    """
    # TODO: Implement Function
    input_real = tf.placeholder(tf.float32, [None,image_width,image_height,image_channels],name = 'input_real')
    input_z=tf.placeholder(tf.float32,[None, z_dim],name= 'input_z')
    lr = tf.placeholder(tf.float32, name='lr')
    return input_real,input_z,lr
           

discriminator

def discriminator(images, reuse=False,alpha = 0.2):
    """
    Create the discriminator network
    :param image: Tensor of input image(s)
    :param reuse: Boolean if the weights should be reused
    :return: Tuple of (tensor output of the discriminator, tensor logits of the discriminator)
    """
    # TODO: Implement Function
    with tf.variable_scope('discriminator', reuse=reuse):
        #print(images.shape) 28*28*3
        x1 = tf.layers.conv2d(images, 32, 5, strides=2, padding='same')
        relu1 = tf.maximum(alpha * x1, x1)

        x2 = tf.layers.conv2d(relu1, 64, 5, strides=2, padding='same')
        bn2 = tf.layers.batch_normalization(x2, training=True)
        relu2 = tf.maximum(alpha*bn2, bn2)

        x3 = tf.layers.conv2d(relu2, 128, 5, strides=2, padding='same')
        bn3 = tf.layers.batch_normalization(x3, training=True)
        relu3 = tf.maximum(alpha*bn3, bn3)

        flat = tf.reshape(relu3, (-1, 4*4*128))
        
        logits = tf.layers.dense(flat, 1)
        out = tf.sigmoid(logits)

    return out, logits

           

generator

def generator(z, out_channel_dim, is_train=True,alpha = 0.2):
    """
    Create the generator network
    :param z: Input z
    :param out_channel_dim: The number of channels in the output image
    :param is_train: Boolean if generator is being used for training
    :return: The tensor output of the generator
    """
    # TODO: Implement Function
    with tf.variable_scope('generator', reuse = not is_train):
        # First fully connected layer
        x1 = tf.layers.dense(z, 3*3*512)
        
        # Reshape it to start the convolutional stack
        x1 = tf.reshape(x1, (-1, 3, 3, 512))
        x1 = tf.layers.batch_normalization(x1, training= is_train)
        x1 = tf.maximum(alpha * x1, x1)
        #print(x1.shape)
        # 3x3x512 now
        
        x2 = tf.layers.conv2d_transpose(x1, 256, 5, strides=2, padding='same')
        x2 = tf.layers.batch_normalization(x2, training= is_train)
        x2 = tf.maximum(alpha * x2, x2)
        #print(x2.shape)
        # 6x6x256 now,卷积核大小设为5*5
        
        x3 = tf.layers.conv2d_transpose(x2, 128, 5, strides=2, padding='same')
        x3 = tf.layers.batch_normalization(x3, training=is_train)
        x3 = tf.maximum(alpha * x3, x3)
        #print(x3.shape)
        # 12x12x128 now
        
        # Output layer
        logits = tf.layers.conv2d_transpose(x3, out_channel_dim, 6, strides=2, padding='valid')
        #print(logits.shape)
        # 28x28x5now
        
        out = tf.tanh(logits)
        
    return out
           

loss function

def model_loss(input_real, input_z, out_channel_dim):
    """
    Get the loss for the discriminator and generator
    :param input_real: Images from the real dataset
    :param input_z: Z input
    :param out_channel_dim: The number of channels in the output image
    :return: A tuple of (discriminator loss, generator loss)
    """
    # TODO: Implement Function
    g_model = generator(input_z, out_channel_dim)
    d_model_real, d_logits_real = discriminator(input_real)
    d_model_fake, d_logits_fake = discriminator(g_model, reuse=True)
    
    d_loss_real = tf.reduce_mean(
        tf.nn.sigmoid_cross_entropy_with_logits(logits=d_logits_real, labels=tf.ones_like(d_model_real)))
    d_loss_fake = tf.reduce_mean(
        tf.nn.sigmoid_cross_entropy_with_logits(logits=d_logits_fake, labels=tf.zeros_like(d_model_fake)))
    g_loss = tf.reduce_mean(
        tf.nn.sigmoid_cross_entropy_with_logits(logits=d_logits_fake, labels=tf.ones_like(d_model_fake)))
    d_loss = d_loss_real + d_loss_fake
    
    return d_loss, g_loss
           

optimizers

def model_opt(d_loss, g_loss, learning_rate, beta1):
    """
    Get optimization operations
    :param d_loss: Discriminator loss Tensor
    :param g_loss: Generator loss Tensor
    :param learning_rate: Learning Rate Placeholder
    :param beta1: The exponential decay rate for the 1st moment in the optimizer
    :return: A tuple of (discriminator training operation, generator training operation)
    """
    # TODO: Implement Function
    t_vars = tf.trainable_variables()
    d_vars = [var for var in t_vars if var.name.startswith('discriminator')]
    g_vars = [var for var in t_vars if var.name.startswith('generator')]
    
    # Optimize
    with tf.control_dependencies(tf.get_collection(tf.GraphKeys.UPDATE_OPS)):
        d_train_opt = tf.train.AdamOptimizer(learning_rate, beta1=beta1).minimize(d_loss, var_list=d_vars)
        g_train_opt = tf.train.AdamOptimizer(learning_rate, beta1=beta1).minimize(g_loss, var_list=g_vars)
    
    return d_train_opt, g_train_opt
           

display generate image

import numpy as np

def show_generator_output(sess, n_images, input_z, out_channel_dim, image_mode):
    """
    Show example output for the generator
    :param sess: TensorFlow session
    :param n_images: Number of Images to display
    :param input_z: Input Z Tensor
    :param out_channel_dim: The number of channels in the output image
    :param image_mode: The mode to use for images ("RGB" or "L")
    """
    cmap = None if image_mode == 'RGB' else 'gray'
    z_dim = input_z.get_shape().as_list()[-1]
    example_z = np.random.uniform(-1, 1, size=[n_images, z_dim])

    samples = sess.run(
        generator(input_z, out_channel_dim, False),
        feed_dict={input_z: example_z})

    images_grid = helper.images_square_grid(samples, image_mode)
    pyplot.imshow(images_grid, cmap=cmap)
    pyplot.show()

           

train

def train(epoch_count, batch_size, z_dim, learning_rate, beta1, get_batches, data_shape, data_image_mode):
    """
    Train the GAN
    :param epoch_count: Number of epochs
    :param batch_size: Batch Size
    :param z_dim: Z dimension
    :param learning_rate: Learning Rate
    :param beta1: The exponential decay rate for the 1st moment in the optimizer
    :param get_batches: Function to get batches
    :param data_shape: Shape of the data
    :param data_image_mode: The image mode to use for images ("RGB" or "L")
    """
    # TODO: Build Model
    _, img_width, img_height, img_channels = data_shape
    
    input_real, input_z, lr = model_inputs(img_width, img_height, img_channels, z_dim)
    
    d_loss, g_loss = model_loss(input_real, input_z, img_channels)
    d_opt, g_opt = model_opt(d_loss, g_loss, lr, beta1)
    
    steps = 0
    
    with tf.Session() as sess:
        sess.run(tf.global_variables_initializer())
        for epoch_i in range(epoch_count):
            for batch_images in get_batches(batch_size):
                # TODO: Train Model
                steps += 1
                
                # Sample random noise for G
                batch_z = np.random.uniform(-1, 1, size=(batch_size, z_dim))
                
                # Run optimizers
                _ = sess.run(d_opt, feed_dict={input_real: batch_images, input_z: batch_z,lr:learning_rate})
                _ = sess.run(g_opt, feed_dict={input_real: batch_images,input_z: batch_z,lr:learning_rate })
                if steps % 100 == 0:
                    # At the end of each epoch, get the losses and print them out
                    train_loss_d = d_loss.eval({input_z: batch_z, input_real: batch_images})
                    train_loss_g = g_loss.eval({input_z: batch_z})
                    print("Epoch {}/{}...".format(epoch_i+1, epoch_count),
                          "Discriminator Loss: {:.4f}...".format(train_loss_d),
                          "Generator Loss: {:.4f}".format(train_loss_g))
                    show_generator_output(sess, 25, input_z, img_channels, data_image_mode)