前面主要讲到了分类问题,从这节开始,进入到回归的学习。这节主要介绍几个常用的数值回归算法。
1、线性回归
数据的线性拟合
平方误差损失函数:

回归系数:
主要算法实现:
def standRegres(xArr,yArr):
xMat = mat(xArr); yMat = mat(yArr).T
xTx = xMat.T*xMat
if linalg.det(xTx) == :
print "This matrix is singular, cannot do inverse"
return
ws = xTx.I * (xMat.T*yMat)
return ws
2、局部加权线性回归
由于线性回归可能的欠拟合,引入局部加权线性回归,根据距离训练样本和预测样本之间的距离不同,而给定不同的权值。
为了表示上面的权值,引入核,常用的核为高斯核:
k取不同值时,与权重w的关系
回归系数:
主要算法实现:
def lwlr(testPoint,xArr,yArr,k=):
xMat = mat(xArr); yMat = mat(yArr).T
m = shape(xMat)[]
weights = mat(eye((m)))
for j in range(m): #next 2 lines create weights matrix
diffMat = testPoint - xMat[j,:] #
weights[j,j] = exp(diffMat*diffMat.T/(-*k**))
xTx = xMat.T * (weights * xMat)
if linalg.det(xTx) == :
print "This matrix is singular, cannot do inverse"
return
ws = xTx.I * (xMat.T * (weights * yMat))
return testPoint * ws
def lwlrTest(testArr,xArr,yArr,k=): #loops over all the data points and applies lwlr to each one
m = shape(testArr)[]
yHat = zeros(m)
for i in range(m):
yHat[i] = lwlr(testArr[i],xArr,yArr,k)
return yHat
def lwlrTestPlot(xArr,yArr,k=): #same thing as lwlrTest except it sorts X first
yHat = zeros(shape(yArr)) #easier for plotting
xCopy = mat(xArr)
xCopy.sort()
for i in range(shape(xArr)[]):
yHat[i] = lwlr(xCopy[i],xArr,yArr,k)
return yHat,xCopy
3、岭回归和逐步线性回归
如果特征数>样本个数(m>n)怎么办?(此时非满秩矩阵,矩阵不能求逆),一开始为了解决这个问题而引入了缩减系数的方法,岭回归就是其中的一种。简单来说岭回归就是在矩阵X’*T后加入一个lamda*I,使之成为一个满秩矩阵。岭回归也用于在估计中加入偏差,以便能得到更好的估计。这里通过引入lamda来限制所有的w之和,通过引入该惩罚项,能够减少不重要的参数,这一技术在统计学上称为缩减技术。
回归系数:
def rssError(yArr,yHatArr): #yArr and yHatArr both need to be arrays
return ((yArr-yHatArr)**).sum()
def ridgeRegres(xMat,yMat,lam=):
xTx = xMat.T*xMat
denom = xTx + eye(shape(xMat)[])*lam
if linalg.det(denom) == :
print "This matrix is singular, cannot do inverse"
return
ws = denom.I * (xMat.T*yMat)
return ws
def ridgeTest(xArr,yArr):
xMat = mat(xArr); yMat=mat(yArr).T
yMean = mean(yMat,)
yMat = yMat - yMean #to eliminate X0 take mean off of Y
#regularize X's
xMeans = mean(xMat,) #calc mean then subtract it off
xVar = var(xMat,) #calc variance of Xi then divide by it
xMat = (xMat - xMeans)/xVar
numTestPts =
wMat = zeros((numTestPts,shape(xMat)[]))
for i in range(numTestPts):
ws = ridgeRegres(xMat,yMat,exp(i-))
wMat[i,:]=ws.T
return wMat
def regularize(xMat):#regularize by columns
inMat = xMat.copy()
inMeans = mean(inMat,) #calc mean then subtract it off
inVar = var(inMat,) #calc variance of Xi then divide by it
inMat = (inMat - inMeans)/inVar
return inMat
向前逐步回归:
算法伪代码
def stageWise(xArr,yArr,eps=,numIt=):
xMat = mat(xArr); yMat=mat(yArr).T
yMean = mean(yMat,)
yMat = yMat - yMean #can also regularize ys but will get smaller coef
xMat = regularize(xMat)
m,n=shape(xMat)
#returnMat = zeros((numIt,n)) #testing code remove
ws = zeros((n,)); wsTest = ws.copy(); wsMax = ws.copy()
for i in range(numIt):
print ws.T
lowestError = inf;
for j in range(n):
for sign in [-,]:
wsTest = ws.copy()
wsTest[j] += eps*sign
yTest = xMat*wsTest
rssE = rssError(yMat.A,yTest.A)
if rssE < lowestError:
lowestError = rssE
wsMax = wsTest
ws = wsMax.copy()
#returnMat[i,:]=ws.T
#return returnMat
4、权衡方差和偏差
能挖掘出哪些特征是重要的,哪些特征是不重要的
算法实现:
def crossValidation(xArr,yArr,numVal=):
m = len(yArr)
indexList = range(m)
errorMat = zeros((numVal,))#create error mat 30columns numVal rows
for i in range(numVal):
trainX=[]; trainY=[]
testX = []; testY = []
random.shuffle(indexList)
for j in range(m):#create training set based on first 90% of values in indexList
if j < m*:
trainX.append(xArr[indexList[j]])
trainY.append(yArr[indexList[j]])
else:
testX.append(xArr[indexList[j]])
testY.append(yArr[indexList[j]])
wMat = ridgeTest(trainX,trainY) #get 30 weight vectors from ridge
for k in range():#loop over all of the ridge estimates
matTestX = mat(testX); matTrainX=mat(trainX)
meanTrain = mean(matTrainX,)
varTrain = var(matTrainX,)
matTestX = (matTestX-meanTrain)/varTrain #regularize test with training params
yEst = matTestX * mat(wMat[k,:]).T + mean(trainY)#test ridge results and store
errorMat[i,k]=rssError(yEst.T.A,array(testY))
#print errorMat[i,k]
meanErrors = mean(errorMat,)#calc avg performance of the different ridge weight vectors
minMean = float(min(meanErrors))
bestWeights = wMat[nonzero(meanErrors==minMean)]
#can unregularize to get model
#when we regularized we wrote Xreg = (x-meanX)/var(x)
#we can now write in terms of x not Xreg: x*w/var(x) - meanX/var(x) +meanY
xMat = mat(xArr); yMat=mat(yArr).T
meanX = mean(xMat,); varX = var(xMat,)
unReg = bestWeights/varX
print "the best model from Ridge Regression is:\n",unReg
print "with constant term: ",-*sum(multiply(meanX,unReg)) + mean(yMat)