转载自:https://zhuanlan.zhihu.com/p/75492883
浅谈VINS中的global fusion节点

刘弟弟
资深小朋友
VINS-Fusion开源已经很长时间了,但是一直也没时间看。最近需要用到gps与VO融合,就先学习了global fusion节点。global fusion节点中数据融合的思路非常巧妙,令人赞叹,并且代码比较简单,很容易读懂。下面是一些学习源码的体会与大家分享,如有不当之处,欢迎批评指正~
1.整体流程分析
首先 global Estimator 节点订阅两个节点:
- 1.VIO输出的 nav_msgs::Odometry 类型消息,这个定位信息包含了VIO的位置和姿态,其坐标系原点位于VIO的第一帧处。
ros::Subscriber sub_vio = n.subscribe("/vins_estimator/odometry", 100, vio_callback);
- 2.GPS输出的sensor_msgs::NavSatFixConstPtr 类型消息,这个是全局定位信息,用经纬度来表示,其坐标原点位于该GPS坐标系下定义的0经度0纬度处。
ros::Subscriber sub_GPS = n.subscribe("/gps", 100, GPS_callback);
我们再分别看其回调函数(这里贴出来的代码只保留了主干部分)
先看GPS回调函数,很简单,只是把GPS消息存储到了队列里面
void GPS_callback(const sensor_msgs::NavSatFixConstPtr &GPS_msg)
{
//printf("gps_callback! \n");
m_buf.lock();
gpsQueue.push(GPS_msg);
m_buf.unlock();
}
VIO回调函数,请看注释:
void vio_callback(const nav_msgs::Odometry::ConstPtr &pose_msg)
{
double t = pose_msg->header.stamp.toSec();
last_vio_t = t;
// 获取VIO输出的位置(三维向量),姿态(四元数)
Eigen::Vector3d vio_t;
Eigen::Quaterniond vio_q;
......
/// 位姿传入global Estimator中
globalEstimator.inputOdom(t, vio_t, vio_q);
m_buf.lock();
// 寻找与VIO时间戳相对应的GPS消息
// 细心的读者可能会疑惑,这里需不需要对GPS和VIO进行硬件上的时间戳同步呢?
// 这个问题请看总结与讨论
while(!gpsQueue.empty())
{
// 获取最老的GPS数据和其时间
sensor_msgs::NavSatFixConstPtr GPS_msg = gpsQueue.front();
double gps_t = GPS_msg->header.stamp.toSec();
// 10ms sync tolerance
// +- 10ms的时间偏差
if(gps_t >= t - 0.01 && gps_t <= t + 0.01)
{ /// gps的经纬度,海拔高度
double latitude = GPS_msg->latitude;
double longitude = GPS_msg->longitude;
double altitude = GPS_msg->altitude;
// gps 数据的方差
double pos_accuracy = GPS_msg->position_covariance[0];
if(pos_accuracy <= 0)
pos_accuracy = 1;
//printf("receive covariance %lf \n", pos_accuracy);
/// GPS_msg->status.status 这个数字代表了GPS的状态(固定解,浮点解等)
/// 具体可以谷歌
// if(GPS_msg->status.status > 8)
// 向globalEstimator中输入GPS数据
globalEstimator.inputGPS(t, latitude, longitude, altitude, pos_accuracy);
gpsQueue.pop();
break;
}
else if(gps_t < t - 0.01)
gpsQueue.pop();
else if(gps_t > t + 0.01)
break;
}
m_buf.unlock();
......
// 广播轨迹(略)......
pub_global_odometry.publish(odometry);
pub_global_path.publish(*global_path);
publish_car_model(t, global_t, global_q);
// 位姿写入文本文件(略)......
}
可以看出,global Fusion的优化策略是收到一帧VIO数据,就寻找相应的GPS数据来进行优化。我们下面主要来看一下globalEstimator中的inputOdom()和inputGPS()这两个函数。
首先看下 inputGPS():
void GlobalOptimization::inputGPS(double t, double latitude,
double longitude,
double altitude,
double posAccuracy)
{
double xyz[3];
// 因为经纬度表示的是地球上的坐标,而地球是一个球形,
// 需要首先把经纬度转化到平面坐标系上
// 值得一提的是,GPS2XYZ()并非把经纬度转化到世界坐标系下(以0经度,0纬度为原点),
// 而是以第一帧GPS数据为坐标原点,这一点需要额外注意
GPS2XYZ(latitude, longitude, altitude, xyz);
// 存入经纬度计算出的平面坐标,存入GPSPositionMap中
vector<double> tmp{xyz[0], xyz[1], xyz[2], posAccuracy};
GPSPositionMap[t] = tmp;
newGPS = true;
}
再看inputOdom():
void GlobalOptimization::inputOdom(double t, Eigen::Vector3d OdomP, Eigen::Quaterniond OdomQ)
{
mPoseMap.lock();
// 把vio直接输出的位姿存入 localPoseMap 中
vector<double> localPose{OdomP.x(), OdomP.y(), OdomP.z(),
OdomQ.w(), OdomQ.x(), OdomQ.y(), OdomQ.z()};
localPoseMap[t] = localPose;
Eigen::Quaterniond globalQ;
/// 把VIO转换到GPS坐标系下,准确的说是转换到以第一帧GPS为原点的坐标系下
/// 转换之后的位姿插入到globalPoseMap 中
globalQ = WGPS_T_WVIO.block<3, 3>(0, 0) * OdomQ;
Eigen::Vector3d globalP =
WGPS_T_WVIO.block<3, 3>(0, 0) * OdomP + WGPS_T_WVIO.block<3, 1>(0, 3);
vector<double> globalPose{globalP.x(), globalP.y(), globalP.z(),
globalQ.w(), globalQ.x(), globalQ.y(), globalQ.z()};
globalPoseMap[t] = globalPose;
lastP = globalP;
lastQ = globalQ;
// 把最新的全局姿态插入轨迹当中(过程略)
......
global_path.poses.push_back(pose_stamped);
mPoseMap.unlock();
}
现在两种数据都收到以后,万事俱备,我们看一下 void GlobalOptimization::optimize()这个函数:
这个函数开了一个线程来做优化(这个代码太长了,贴一部分把):
- 首先使用ceres构建最小二乘问题,这个没啥可说的
- 状态量赋初值,添加参数块。可以看出来,迭代的初始值是globalPoseMap中的值,也就是VIO转换到GPS坐标系下的值。
int length = localPoseMap.size();
// w^t_i w^q_i
double t_array[length][3];
double q_array[length][4];
map<double, vector<double>>::iterator iter;
iter = globalPoseMap.begin();
for (int i = 0; i < length; i++, iter++)
{
t_array[i][0] = iter->second[0];
t_array[i][1] = iter->second[1];
t_array[i][2] = iter->second[2];
q_array[i][0] = iter->second[3];
q_array[i][1] = iter->second[4];
q_array[i][2] = iter->second[5];
q_array[i][3] = iter->second[6];
problem.AddParameterBlock(q_array[i], 4, local_parameterization);
problem.AddParameterBlock(t_array[i], 3);
}
3.然后添加残差:
for (iterVIO = localPoseMap.begin(); iterVIO != localPoseMap.end(); iterVIO++, i++) {
//vio factor
// 添加VIO残差,观测量是两帧VIO数据之差,是相对的。而下面的GPS是绝对的
iterVIONext = iterVIO;
iterVIONext++;
if (iterVIONext != localPoseMap.end()) {
/// 计算两帧VIO之间的相对差(略)......
ceres::CostFunction *vio_function = RelativeRTError::Create(iPj.x(), iPj.y(), iPj.z(),
iQj.w(), iQj.x(), iQj.y(), iQj.z(),
0.1, 0.01);
problem.AddResidualBlock(vio_function, NULL, q_array[i], t_array[i], q_array[i + 1], t_array[i + 1]);
}
// gps factor
// GPS残差,这个观测量直接就是GPS的测量数据,
// 残差计算的是GPS和优化变量的差,这个是绝对的差。
double t = iterVIO->first;
iterGPS = GPSPositionMap.find(t);
if (iterGPS != GPSPositionMap.end()) {
ceres::CostFunction *gps_function = TError::Create(iterGPS->second[0], iterGPS->second[1],
iterGPS->second[2], iterGPS->second[3]);
problem.AddResidualBlock(gps_function, loss_function, t_array[i]);
}
}
优化完成后,再根据优化结果更新姿态就ok啦。为了防止VIO漂移过大,每次优化完成还需要计算一下VIO到GPS坐标系的变换。
2.GPS与VIO融合策略
(知乎这个文章编辑器是真的卡........)
根据上文的分析,我们可以看出整体的优化策略和位姿图非常相似,因为观测量是相邻两帧VIO之间的差和GPS坐标,所以global Fusion 节点相当于把对应时间戳的GPS位姿和VIO位姿的差,均匀分布到每两个相邻的VIO之间。使得整体的误差和最小化。
3.总结与讨论
1.思考
根据上文中分析的优化策略,global fusion的应用场景应该是GPS频率较低,VIO频率较高的系统。fusion 默认发布频率位10hz,而现在的GPS可以达到20hz,如果在这种系统上使用,你可能还需要修改下VIO或者GPS频率。
2.GPS与VIO时间不同步
上文提到了,在多传感器融合系统中,传感器往往需要做时钟同步,那么global Fusion需要么?GPS分为为很多种,我们常见的GPS模块精度较低,十几米甚至几十米的误差,这种情况下,同不同步没那么重要了,因为GPS方差太大。另外一种比较常见的是RTK-GPS ,在无遮挡的情况下,室外精度可以达到 2cm之内,输出频率可以达到20hz,这种情况下,不同步时间戳会对系统产生影响,如果VIO要和RTK做松耦合,这点还需要注意。