Given an array of integers
arr
and an integer
k
.
A value
arr[i]
is said to be stronger than a value
arr[j]
if
|arr[i] - m| > |arr[j] - m|
where
m
is the median of the array.
If
|arr[i] - m| == |arr[j] - m|
, then
arr[i]
is said to be stronger than
arr[j]
if
arr[i] > arr[j]
.
Return a list of the strongest
k
values in the array. return the answer in any arbitrary order.
Median is the middle value in an ordered integer list. More formally, if the length of the list is n, the median is the element in position
((n - 1) / 2)
in the sorted list (0-indexed).
- For
,arr = [6, -3, 7, 2, 11]
and the median is obtained by sorting the arrayn = 5
and the median isarr = [-3, 2, 6, 7, 11]
wherearr[m]
. The median ism = ((5 - 1) / 2) = 2
.6
- For
,arr = [-7, 22, 17, 3]
and the median is obtained by sorting the arrayn = 4
and the median isarr = [-7, 3, 17, 22]
wherearr[m]
. The median ism = ((4 - 1) / 2) = 1
.3
Example 1:
Input: arr = [1,2,3,4,5], k = 2
Output: [5,1]
Explanation: Median is 3, the elements of the array sorted by the strongest are [5,1,4,2,3]. The strongest 2 elements are [5, 1]. [1, 5] is also accepted answer.
Please note that although |5 - 3| == |1 - 3| but 5 is stronger than 1 because 5 > 1.
Example 2:
Input: arr = [1,1,3,5,5], k = 2
Output: [5,5]
Explanation: Median is 3, the elements of the array sorted by the strongest are [5,5,1,1,3]. The strongest 2 elements are [5, 5].
Example 3:
Input: arr = [6,7,11,7,6,8], k = 5
Output: [11,8,6,6,7]
Explanation: Median is 7, the elements of the array sorted by the strongest are [11,8,6,6,7,7].
Any permutation of [11,8,6,6,7] is accepted.
Example 4:
Input: arr = [6,-3,7,2,11], k = 3
Output: [-3,11,2]
Example 5:
Input: arr = [-7,22,17,3], k = 2
Output: [22,17]
Constraints:
-
1 <= arr.length <= 10^5
-
-10^5 <= arr[i] <= 10^5
-
1 <= k <= arr.length
思路:就是一个求median加上pq的扫描,最后输出; O(nlogn + n) = O(nlogn);
class Solution {
private class Node {
public int dis;
public int value;
public Node(int dis, int value) {
this.dis = dis;
this.value = value;
}
}
private class NodeComparator implements Comparator<Node> {
@Override
public int compare(Node a, Node b) {
if(a.dis != b.dis) {
return a.dis - b.dis;
} else {
return a.value - b.value;
}
}
}
public int[] getStrongest(int[] arr, int k) {
int median = getMedian(arr);
PriorityQueue<Node> pq = new PriorityQueue<Node>(new NodeComparator());
for(int i = 0; i < arr.length; i++) {
Node node = new Node(Math.abs(arr[i] - median), arr[i]);
if(pq.isEmpty() || pq.size() < k) {
pq.offer(node);
} else {
if(node.dis > pq.peek().dis || (node.dis == pq.peek().dis && node.value > pq.peek().value)) {
pq.poll();
pq.offer(node);
}
}
}
int[] res = new int[pq.size()];
int index = 0;
while(!pq.isEmpty()) {
res[index++] = pq.poll().value;
}
return res;
}
private int getMedian(int[] arr) {
int n = arr.length;
int[] temp = new int[n];
for(int i = 0; i < n; i++) {
temp[i] = arr[i];
}
Arrays.sort(temp);
return temp[(n - 1) / 2];
}
}