天天看点

The k Strongest Values in an Array

Given an array of integers 

arr

 and an integer 

k

.

A value 

arr[i]

 is said to be stronger than a value 

arr[j]

 if 

|arr[i] - m| > |arr[j] - m|

 where 

m

 is the median of the array.

If 

|arr[i] - m| == |arr[j] - m|

, then 

arr[i]

 is said to be stronger than 

arr[j]

 if 

arr[i] > arr[j]

.

Return a list of the strongest 

k

 values in the array. return the answer in any arbitrary order.

Median is the middle value in an ordered integer list. More formally, if the length of the list is n, the median is the element in position 

((n - 1) / 2)

 in the sorted list (0-indexed).

  • For 

    arr = [6, -3, 7, 2, 11]

    n = 5

     and the median is obtained by sorting the array 

    arr = [-3, 2, 6, 7, 11]

     and the median is 

    arr[m]

     where 

    m = ((5 - 1) / 2) = 2

    . The median is 

    6

    .
  • For 

    arr = [-7, 22, 17, 3]

    n = 4

     and the median is obtained by sorting the array 

    arr = [-7, 3, 17, 22]

     and the median is 

    arr[m]

     where 

    m = ((4 - 1) / 2) = 1

    . The median is 

    3

    .

Example 1:

Input: arr = [1,2,3,4,5], k = 2
Output: [5,1]
Explanation: Median is 3, the elements of the array sorted by the strongest are [5,1,4,2,3]. The strongest 2 elements are [5, 1]. [1, 5] is also accepted answer.
Please note that although |5 - 3| == |1 - 3| but 5 is stronger than 1 because 5 > 1.
      

Example 2:

Input: arr = [1,1,3,5,5], k = 2
Output: [5,5]
Explanation: Median is 3, the elements of the array sorted by the strongest are [5,5,1,1,3]. The strongest 2 elements are [5, 5].
      

Example 3:

Input: arr = [6,7,11,7,6,8], k = 5
Output: [11,8,6,6,7]
Explanation: Median is 7, the elements of the array sorted by the strongest are [11,8,6,6,7,7].
Any permutation of [11,8,6,6,7] is accepted.
      

Example 4:

Input: arr = [6,-3,7,2,11], k = 3
Output: [-3,11,2]
      

Example 5:

Input: arr = [-7,22,17,3], k = 2
Output: [22,17]
      

Constraints:

  • 1 <= arr.length <= 10^5

  • -10^5 <= arr[i] <= 10^5

  • 1 <= k <= arr.length

思路:就是一个求median加上pq的扫描,最后输出; O(nlogn + n) = O(nlogn);

class Solution {
    private class Node {
        public int dis;
        public int value;
        public Node(int dis, int value) {
            this.dis = dis;
            this.value = value;
        }
    }
    
    private class NodeComparator implements Comparator<Node> {
        @Override
        public int compare(Node a, Node b) {
            if(a.dis != b.dis) {
                return a.dis - b.dis;
            } else {
                return a.value - b.value;
            }
        }
    }
    
    public int[] getStrongest(int[] arr, int k) {
        int median = getMedian(arr);
        PriorityQueue<Node> pq = new PriorityQueue<Node>(new NodeComparator());
        for(int i = 0; i < arr.length; i++) {
            Node node = new Node(Math.abs(arr[i] - median), arr[i]);
            if(pq.isEmpty() || pq.size() < k) {
                pq.offer(node);
            } else {
                if(node.dis > pq.peek().dis || (node.dis == pq.peek().dis && node.value > pq.peek().value)) {
                    pq.poll();
                    pq.offer(node);
                }
            }
        }
        
        int[] res = new int[pq.size()];
        int index = 0;
        while(!pq.isEmpty()) {
            res[index++] = pq.poll().value;
        }
        return res;
    }
    
    private int getMedian(int[] arr) {
        int n = arr.length;
        int[] temp = new int[n];
        for(int i = 0; i < n; i++) {
            temp[i] = arr[i];
        }
        Arrays.sort(temp);
        return temp[(n - 1) / 2];
    }
}
           

继续阅读