文章目录
-
- 1 理论
- 2 代码
- 3 参考
1 理论
EM算法通过迭代求解观测数据的对数似然函数 L ( θ ) = log P ( Y ∣ θ ) {L}(\theta)=\log {P}(\mathrm{Y} | \theta) L(θ)=logP(Y∣θ)的极大化,实现极大似然估计。每次迭代包括两步:
-
E E E步:求期望
Q ( θ , θ ( i ) ) = ∑ z log P ( Y , Z ∣ θ ) P ( Z ∣ Y , θ ( i ) ) Q\left(\theta, \theta^{(i)}\right)=\sum_{z} \log P(Y, Z \mid \theta) P\left(Z \mid Y, \theta^{(i)}\right) Q(θ,θ(i))=z∑logP(Y,Z∣θ)P(Z∣Y,θ(i))
-
M M M步:求极大
θ ( i + 1 ) = arg max θ Q ( θ , θ ( i ) ) \theta^{(i+1)}=\arg \max _{\theta} Q\left(\theta, \theta^{(i)}\right) θ(i+1)=argθmaxQ(θ,θ(i))
2 代码
class EM:
def __init__(self, prob):
self.pro_A, self.pro_B, self.pro_C = prob
# E步
def pmf(self, i):
pro_1 = self.pro_A * math.pow(self.pro_B, data[i]) * math.pow(
(1 - self.pro_B), 1 - data[i])
pro_2 = (1 - self.pro_A) * math.pow(self.pro_C, data[i]) * math.pow(
(1 - self.pro_C), 1 - data[i])
return pro_1 / (pro_1 + pro_2)
# M步
def fit(self, data):
count = len(data)
for d in range(count):
_ = yield
_pmf = [self.pmf(k) for k in range(count)]
pro_A = 1 / count * sum(_pmf)
pro_B = sum([_pmf[k] * data[k] for k in range(count)]) / sum(
[_pmf[k] for k in range(count)])
pro_C = sum([(1 - _pmf[k]) * data[k]
for k in range(count)]) / sum([(1 - _pmf[k])
for k in range(count)])
self.pro_A = pro_A
self.pro_B = pro_B
self.pro_C = pro_C
3 参考
理论:周志华《机器学习》,李航《统计学习方法》
代码:https://github.com/fengdu78/lihang-code