天天看点

VM 概述、内存结构、溢出、调优

作者:IT人的一天

什么是 JVM ?

定义

  • Java Virtual Machine - java 程序的运行环境(java 二进制字节码的运行环境)

好处

  • 一次编写,到处运行
  • 自动内存管理,垃圾回收功能
  • 数组下标越界检查
  • 多态
  • jvm jre jdk
VM 概述、内存结构、溢出、调优

常见的 JVM

VM 概述、内存结构、溢出、调优

整体结构

VM 概述、内存结构、溢出、调优

内存结构

程序计数器

VM 概述、内存结构、溢出、调优

定义

  • Program Counter Register 程序计数器(寄存器)
  • 作用
    • 是记住下一条 jvm 指令的执行地址,也就是线程当前要执行的指令地址
  • 特点
    • 线程私有
    • 不会存在内存溢出(唯一)
VM 概述、内存结构、溢出、调优

虚拟机栈

VM 概述、内存结构、溢出、调优

定义

  • Java Virtual Machine Stacks (Java 虚拟机栈)
  • 每个线程运行时所需要的内存,称为虚拟机栈
  • 每个栈由多个栈帧(Frame)组成,对应着每次方法调用时所占用的内存
  • 每个线程只能有一个活动栈帧,对应着当前正在执行的那个方法
  • 栈的大小
    • Linux/x64(64-bit):1024 KB
    • maxOS(64-bit):1024 KB
    • Oracle Solaris/x64(64-bit):1024 KB
    • Windows:The default value depends on virtual memory
VM 概述、内存结构、溢出、调优

问题

  • 垃圾回收是否涉及栈内存?

    不涉及。每一次方法调用之后栈帧会被弹出,释放内存,不需要垃圾回收。

  • 栈内存分配越大越好吗?

    不。计算机总的物理内存有限,栈内存越大,栈的数量就越少,能够开启的线程就越少

  • 方法内的局部变量是否线程安全?如果方法内局部变量没有逃离方法的作用访问,它是线程安全的如果是局部变量引用了对象,并逃离方法的作用范围,需要考虑线程安全

栈内存溢出

  • 栈帧过多导致栈内存溢出
  • 栈帧过大导致栈内存溢出
public static void main(String[] args) throws Exception{
        try {
            method();
        } catch (Exception e) {
            e.printStackTrace();
        } finally {
            System.out.println(count);
        }
    }

    public static void method() {
        count++;
        method();
    }
Exception in thread "main" java.lang.StackOverflowError           

本地方法栈

定义

  • 管理本地方法,即非 Java 语言编写的方法(C语言)的调用
  • Navtive 方法是 Java 通过 JNI 直接调用本地 C/C++ 库
  • 线程私有
  • HotSpot 虚拟机直接把本地方法栈和虚拟机栈合二为一
// Object 类中有大量的本地方法

    public final native Class<?> getClass();

    public native int hashCode();

    protected native Object clone() throws CloneNotSupportedException;

    public final native void notify();

    public final native void notifyAll();

    public final native void wait(long timeout) throws InterruptedException;           

VM 概述、内存结构、溢出、调优

定义

  • 通过 new 关键字,创建对象都会使用堆内存
  • 线程共享的,堆中对象都需要考虑线程安全的问题
  • 垃圾回收机制

堆内存溢出

  • 创建的对象被虚拟机认为有用,不被回收,最后可能造成 OOM
  • 注意不一定非得 new 对象的时候才会出现。
public static void main(String[] args) throws Exception {
        String s = "a";
        ArrayList<String> array = new ArrayList<>();
        int count = 0;
        try {
            while (true) {
                s += "a";
                array.add(s);
                count++;
            }
        } catch (Exception e) {
            e.printStackTrace();
        } finally {
            System.out.println(count);
        }
    }
Exception in thread "main" java.lang.OutOfMemoryError: Java heap space           

堆内存诊断

  • jps 工具

    查看当前系统中有哪些 java 进程

  • jmap 工具

    查看堆内存占用情况 jmap - heap 进程id

  • jconsole 工具

    图形界面的,多功能的监测工具,可以连续监测

  • jvisualvm 工具

    更强大的可视化工具

实例:

  • 输出 1... 之后,线程休眠 30 秒
  • 终端输入 jps,查看进程 id,寻找到 Main 线程的 pid
  • 终端输入 jmap -heap pid
  • 程序创建一个 10 MB 大小的 byte 数组,
  • 输出 2... 之后,线程休眠 30 秒
  • 终端输入 jmap -heap pid
  • 垃圾回收,释放数组内存
  • 输出 3... 之后,线程休眠
  • 终端输入 jmap -heap pid
public static void main(String[] args) throws Exception {
        System.out.println("1...");
        Thread.sleep(30000);
        byte[] bytes = new byte[1024 * 1024 * 10];
        System.out.println("2...");
        Thread.sleep(30000);
        bytes = null;
        System.gc();
        System.out.println("3...");
        Thread.sleep(1000000L);
    }           

三次输入 jmap -heap pid 之后输出的部分内容如下

1️⃣ 第一次:程序刚开始

Eden Space:
   capacity = 66584576 (63.5MB)
   used     = 7990344 (7.620185852050781MB)
   free     = 58594232 (55.87981414794922MB)
   12.000292680394931% used           

2️⃣ 第二次:创建 10 MB byte 数组之后

Eden Space:
   capacity = 66584576 (63.5MB)
   used     = 18476120 (17.620201110839844MB)
   free     = 48108456 (45.879798889160156MB)
   27.748348206046998% used           

注意到 used 大小扩大了 10 MB

3️⃣ 第三次:垃圾回收之后

Eden Space:
   capacity = 66584576 (63.5MB)
   used     = 1331712 (1.27001953125MB)
   free     = 65252864 (62.22998046875MB)
   2.0000307578740157% used           

发现 used 减小明显。

还可以使用 jconsole 图形化工具

程序运行之后终端输入 jconsole 即可

VM 概述、内存结构、溢出、调优

使用 jvisualvm 获取更详细的堆内存描述:

jvisualvm  // 终端输入           
VM 概述、内存结构、溢出、调优

使用 堆 Dump 可以查看堆内具体信息。

方法区

定义

  • 方法区(method area)只是 JVM 规范中定义的一个概念,用于存储类信息、常量池、静态变量、JIT编译后的代码等数据,不同的实现可以放在不同的地方。
  • 逻辑上是堆的一部分,但不同厂商具体实现起来是不一样的,不强制位置
  • hotspot 虚拟机使得在 jdk1.8 之前方法区由永久代实现,在jdk1.8之后由元空间实现(本地内存)
  • 线程共享
  • 会导致内存溢出
VM 概述、内存结构、溢出、调优
VM 概述、内存结构、溢出、调优

方法区内存溢出

  • jdk1.8 元空间内存溢出

因为虚拟机默认使用本机内存作为元空间,内存较大,所以要调小一下元空间的大小。

VM 概述、内存结构、溢出、调优
VM 概述、内存结构、溢出、调优
VM 概述、内存结构、溢出、调优

输入参数

-XX:MaxMetaspaceSize=10m
public class Test extends ClassLoader {
    public static void main(String[] args) {
        int j = 0;
        try {
            Test test = new Test();
            for (int i = 0; i < 10000; i++, j++) {
                // ClassWriter 作用是生成类的二进制字节码
                ClassWriter cw = new ClassWriter(0);
                // 版本号, public, 类名, 包名, 父类, 接口
                cw.visit(Opcodes.V1_8, Opcodes.ACC_PUBLIC, "Class" + i, null, "java/lang/Object", null);
                // 返回 byte[]
                byte[] code = cw.toByteArray();
                // 执行了类的加载
                test.defineClass("Class" + i, code, 0, code.length); // Class 对象
            }
        } catch (Exception e) {
            e.printStackTrace();
        } finally {
            System.out.println(j);
        }
    }
}
Exception in thread "main" java.lang.OutOfMemoryError: Compressed class space           

和预想的不太一样,Compressed class space 是什么呢?

在 64 位平台上,HotSpot 使用了两个压缩优化技术,Compressed Object Pointers (“CompressedOops”) 和 Compressed Class Pointers。

压缩指针,指的是在 64 位的机器上,使用 32 位的指针来访问数据(堆中的对象或 Metaspace 中的元数据)的一种方式。

这样有很多的好处,比如 32 位的指针占用更小的内存,可以更好地使用缓存,在有些平台,还可以使用到更多的寄存器。

-XX:+UseCompressedOops 允许对象指针压缩。

-XX:+UseCompressedClassPointers 允许类指针压缩。

它们默认都是开启的,可以手动关闭它们。

在VM options中输入

-XX:-UseCompressedOops
-XX:-UseCompressedClassPointers           

再次运行结果如下

9344
Exception in thread "main" java.lang.OutOfMemoryError: Metaspace           

表明元空间内存溢出。

  • jdk1.6 永久代内存溢出

相同的代码和虚拟机参数配置,结果如下

Exception in thread "main" java.lang.OutOfMemoryError: PermGen space           

表明永久代内存溢出

运行时常量池

  • 常量池,就是一张表,虚拟机指令根据这张常量表找到要执行的类名、方法名、参数类型、字面量等信息
  • 运行时常量池,常量池是 *.class 文件中的,当该类被加载,它的常量池信息就会放入运行时常量池,并把里面的符号地址变为真实地址

反编译字节码命令(终端先 cd 进入 out 目录下相应字节码文件的目录)

javap -v Class.class           
  • 二进制字节码:由类基本信息、常量池、类方法定义、虚拟机指令组成
public class test02 {
    public static void main(String[] args) {
        System.out.println("hello world");
    }
}
:\Project\JavaProject\Practice\out\production\Practice\demo04>javap -v test02.class
Classfile /E:/Project/JavaProject/Practice/out/production/Practice/demo04/test02.class
  Last modified 2021-11-18; size 535 bytes
  MD5 checksum 6da0b7066cec4b7beb4be01700bf3897
  Compiled from "test02.java"
public class demo04.test02
  minor version: 0
  major version: 52
  flags: ACC_PUBLIC, ACC_SUPER
Constant pool:                            // 常量池
   #1 = Methodref          #6.#20         // java/lang/Object."<init>":()V
   #2 = Fieldref           #21.#22        // java/lang/System.out:Ljava/io/PrintStream;
   #3 = String             #23            // hello world
   #4 = Methodref          #24.#25        // java/io/PrintStream.println:(Ljava/lang/String;)V
   #5 = Class              #26            // demo04/test02
   #6 = Class              #27            // java/lang/Object
   #7 = Utf8               <init>
   #8 = Utf8               ()V
   #9 = Utf8               Code
  #10 = Utf8               LineNumberTable
  #11 = Utf8               LocalVariableTable
  #12 = Utf8               this
  #13 = Utf8               Ldemo04/test02;
  #14 = Utf8               main
  #15 = Utf8               ([Ljava/lang/String;)V
  #16 = Utf8               args
  #17 = Utf8               [Ljava/lang/String;
  #18 = Utf8               SourceFile
  #19 = Utf8               test02.java
  #20 = NameAndType        #7:#8          // "<init>":()V
  #21 = Class              #28            // java/lang/System
  #22 = NameAndType        #29:#30        // out:Ljava/io/PrintStream;
  #23 = Utf8               hello world
  #24 = Class              #31            // java/io/PrintStream
  #25 = NameAndType        #32:#33        // println:(Ljava/lang/String;)V
  #26 = Utf8               demo04/test02
  #27 = Utf8               java/lang/Object
  #28 = Utf8               java/lang/System
  #29 = Utf8               out
  #30 = Utf8               Ljava/io/PrintStream;
  #31 = Utf8               java/io/PrintStream
  #32 = Utf8               println
  #33 = Utf8               (Ljava/lang/String;)V
{
  public demo04.test02();                    // 构造方法
    descriptor: ()V
    flags: ACC_PUBLIC
    Code:
      stack=1, locals=1, args_size=1
         0: aload_0
         1: invokespecial #1                  // Method java/lang/Object."<init>":()V
         4: return
      LineNumberTable:
        line 3: 0
      LocalVariableTable:
        Start  Length  Slot  Name   Signature
            0       5     0  this   Ldemo04/test02;

  public static void main(java.lang.String[]);
    descriptor: ([Ljava/lang/String;)V
    flags: ACC_PUBLIC, ACC_STATIC
    Code:
      stack=2, locals=1, args_size=1
         0: getstatic     #2                  // Field java/lang/System.out:Ljava/io/PrintStream;
         3: ldc           #3                  // String hello world
         5: invokevirtual #4                  // Method java/io/PrintStream.println:(Ljava/lang/String;)V

         8: return
      LineNumberTable:
        line 5: 0
        line 6: 8
      LocalVariableTable:
        Start  Length  Slot  Name   Signature
            0       9     0  args   [Ljava/lang/String;
}
SourceFile: "test02.java"           
  • 常量池可以给虚拟机指令提供一些常量符号,可以通过查表的方式查到。

StringTable

StringTable 的数据结构

  • hash表(数组+链表)
  • 不可扩容
  • 存字符串常量,唯一不重复
  • 每个数组单元称为一个哈希桶
  • 大小至少是 1009

面试题

String s1 = "a"; 
String s2 = "b"; 
String s3 = "a" + "b"; 
String s4 = s1 + s2; 
String s5 = "ab"; 
String s6 = s4.intern(); 
// 问 
System.out.println(s3 == s4); 
System.out.println(s3 == s5); 
System.out.println(s3 == s6); 
String x2 = new String("c") + new String("d"); 
String x1 = "cd"; 
x2.intern(); 
// 问,如果调换了【最后两行代码】的位置呢,如果是jdk1.6呢 
// x2.intern(); 
// String x1 = "cd"; 
System.out.println(x1 == x2);
false
true
true
false
// 调换后,true           

解析

  • 常量池中的字符串仅是符号,第一次用到时才变为对象
  • 利用串池的机制,来避免重复创建字符串对象
  • 字符串变量拼接的原理是 StringBuilder (1.8)
  • 字符串常量拼接的原理是编译期优化
  • 可以使用 intern 方法,主动将串池中还没有的字符串对象放入串池
  • jdk1.8 将这个字符串对象尝试放入串池,如果有则并不会放入,如果没有则放入串池, 会把串池中的对象返回
  • jdk1.6 将这个字符串对象尝试放入串池,如果有则并不会放入,如果没有会把此对象复制一份,放入串池, 会把串池中的对象返回

字符串常量

String s1 = "a"; 
    String s2 = "b"; 
    String s3 = "ab";           

反编译后的执行过程:

Constant pool:
       #1 = Methodref          #6.#24         // java/lang/Object."<init>":()V
       #2 = String             #25            // a
       #3 = String             #26            // b
       #4 = String             #27            // ab
    ...

    Code:
      stack=1, locals=4, args_size=1
         0: ldc           #2                  // String a
         2: astore_1
         3: ldc           #3                  // String b
         5: astore_2
         6: ldc           #4                  // String ab
         8: astore_3
         9: return
    ...
常量池中的信息,都会被加载到运行时常量池中, 这时 a b ab 都是常量池中的符号,还没有变为 java 字符串对象
    ldc #2 会把 a 符号变为 "a" 字符串对象
    ldc #3 会把 b 符号变为 "b" 字符串对象
    ldc #4 会把 ab 符号变为 "ab" 字符串对象           

字符串延迟加载

字符串变量拼接

String s1 = "a"; // 懒惰的
    String s2 = "b";
    String s3 = "ab";
    String s4 = s1 + s2;           

反编译结果

Code:
      stack=2, locals=5, args_size=1
         0: ldc           #2                  // String a
         2: astore_1
         3: ldc           #3                  // String b
         5: astore_2
         6: ldc           #4                  // String ab
         8: astore_3
         9: new           #5                  // class java/lang/StringBuilder
        12: dup
        13: invokespecial #6                  // Method java/lang/StringBuilder."<init>":()V
        16: aload_1
        17: invokevirtual #7                  // Method java/lang/StringBuilder.append:(Ljava/lang/String;)Ljava/lang/StringBuilder;
        20: aload_2
        21: invokevirtual #7                  // Method java/lang/StringBuilder.append:(Ljava/lang/String;)Ljava/lang/StringBuilder;
        24: invokevirtual #8                  // Method java/lang/StringBuilder.toString:()Ljava/lang/String;
        27: astore        4
        29: return           

字符串拼接的过程 new StringBilder().append("a").append("b").toString(),而StringBuilder的toString()方法又在底层创建了一个String对象

@Override
    public String toString() {
        // Create a copy, don't share the array
        return new String(value, 0, count);
    }           

所以 s3 == s4 为 false

字符串常量拼接

String s1 = "a"; // 懒惰的
    String s2 = "b";
    String s3 = "ab";
    String s4 = s1 + s2;
    String s5 = "a" + "b";           

反编译结果

Code:
      stack=2, locals=6, args_size=1
         0: ldc           #2                  // String a
         2: astore_1
         3: ldc           #3                  // String b
         5: astore_2
         6: ldc           #4                  // String ab
         8: astore_3
         9: new           #5                  // class java/lang/StringBuilder
        12: dup
        13: invokespecial #6                  // Method java/lang/StringBuilder."<init>":()V
        16: aload_1
        17: invokevirtual #7                  // Method java/lang/StringBuilder.append:(Ljava/lang/String;)Ljava/lang/StringBuilder;
        20: aload_2
        21: invokevirtual #7                  // Method java/lang/StringBuilder.append:(Ljava/lang/String;)Ljava/lang/StringBuilder;
        24: invokevirtual #8                  // Method java/lang/StringBuilder.toString:()Ljava/lang/String;
        27: astore        4
        29: ldc           #4                  // String ab
        31: astore        5
        33: return           

注意 29: ldc #4 // String ab 和 6: ldc #4 // String ab

指向的是字符串常量池中相同的字符串常量 #4,说明 javac 在编译期间进行了优化,结果已经在编译期确定为 ab

所以 s3 == s5 为 true

intern 方法

String s = new String("a") + new String("b");           

反编译结果

Constant pool:
   ...
   #5 = String             #30            // a
   ...
   #8 = String             #33            // b
   ...
Code:
      stack=4, locals=2, args_size=1
         0: new           #2                  // class java/lang/StringBuilder
         3: dup
         4: invokespecial #3                  // Method java/lang/StringBuilder."<init>":()V
         7: new           #4                  // class java/lang/String
        10: dup
        11: ldc           #5                  // String a
        13: invokespecial #6                  // Method java/lang/String."<init>":(Ljava/lang/String;)V
        16: invokevirtual #7                  // Method java/lang/StringBuilder.append:(Ljava/lang/String;)Ljava/lang/StringBuilder;
        19: new           #4                  // class java/lang/String
        22: dup
        23: ldc           #8                  // String b
        25: invokespecial #6                  // Method java/lang/String."<init>":(Ljava/lang/String;)V
        28: invokevirtual #7                  // Method java/lang/StringBuilder.append:(Ljava/lang/String;)Ljava/lang/StringBuilder;
        31: invokevirtual #9                  // Method java/lang/StringBuilder.toString:()Ljava/lang/String;
        34: astore_1
        35: return
  ...           

可以发现,创建了三个对象,"a","b" 以及StringBuilder.toString()创建的 "ab"。

字符串常量 "a","b" 进入串池,"ab" 是动态拼接出的一个字符串,没有被放入串池。

s 是一个变量指向堆中的 "ab" 字符串对象

调用 String.intern() 方法可以将这个字符串对象尝试放入串池,如果有则并不会放入,把串池中的对象返回;如果没有则放入串池, 再把串池中的对象返回。

注意这里说的返回是指调用 String.intern() 方法后返回的值。比如 String ss = s.intern() , ss 接收返回的对象,与 s 无关。而 s 只与对象本身有关,与返回值无关。
String x = "ab";
        String s = new String("a") + new String("b");
        String s2 = s.intern(); 

        System.out.println(s2 == x);
        System.out.println(s == x);           

过程:

  • 字符串常量 "ab" 放入串池
  • "a"和"b" 放入串池
  • s 指向堆中创建的 "ab" 对象
  • 串池中已经有 "ab" 对象,则返回串池中的对象引用给变量 s2 ,s 依然指向堆中的 "ab" 对象
  • s2 == x 为 true
  • s == x 为 false

如果调换一下位置

String s = new String("a") + new String("b");
        String s2 = s.intern(); 
        String x = "ab";

        System.out.println( s2 == x);
        System.out.println( s == x );           

过程:

  • "a"和"b" 放入串池
  • s 指向堆中创建的 "ab" 对象
  • 串池中没有 "ab" 对象,则返回串池中的对象引用给变量 s2 ,s 指向串池中的 "ab" 对象
  • s2 == x 为 true
  • s == x 为 true

StringTable 的位置

VM 概述、内存结构、溢出、调优
  • jdk1.6 StringTable 放在永久代中,与常量池放在一起
  • jdk1.8 StringTable 放在堆中

StringTable 垃圾回收

  • StringTable 会发生垃圾回收
-Xmx10m -XX:+PrintStringTableStatistics
-XX:+PrintGCDetails -verbose:gc
public static void main(String[] args) throws InterruptedException {
        int i = 0;
        try {
            for (int j = 0; j < 100000; j++) { // j=100, j=10000
                String.valueOf(j).intern();
                i++;
            }
        } catch (Throwable e) {
            e.printStackTrace();
        } finally {
            System.out.println(i);
        }
    }
[GC (Allocation Failure) [PSYoungGen: 2048K->488K(2560K)] 2048K->676K(9728K), 0.0010489 secs] [Times: user=0.00 sys=0.00, real=0.00 secs] 
...
StringTable statistics:
Number of buckets       :     60013 =    480104 bytes, avg   8.000
Number of entries       :      4388 =    105312 bytes, avg  24.000
Number of literals      :      4388 =    284264 bytes, avg  64.782
Total footprint         :           =    869680 bytes           

可以看到 entries 的个数小于 10000,从第一行也可以看出发生了 GC。

StringTable 调优

调整 StringTable 的大小

-XX:StringTableSize=桶个数           
  • 哈希桶越多,分布越分散,发生哈希冲突的可能性越低,效率越高
  • 字符串常量多的话,可以调大 StringTable 的大小,能增加哈希桶的个数,提供效率

考虑字符串是否入池

  • 使用 String.intern() 方法使重复字符串常量入池,减少堆的内存占用
public static void main(String[] args) throws IOException {
        List<String> address = new ArrayList<>();
        System.in.read();
        for (int i = 0; i < 10; i++) {
            try (BufferedReader reader = new BufferedReader(new InputStreamReader(new FileInputStream("linux.words"), "utf-8"))) {
                String line = null;
                long start = System.nanoTime();
                while (true) {
                    line = reader.readLine();
                    if(line == null) {
                        break;
                    }
                    address.add(line.intern());  // 字符串常量放入串池
                }
                System.out.println("cost:" +(System.nanoTime()-start)/1000000);
            }
        }
        System.in.read();
    }           

直接内存

定义

  • Direct Memory
  • 常见于 NIO 操作时,用于数据缓冲区
  • 分配回收成本较高,但读写性能高
  • 不受 JVM 内存回收管理
VM 概述、内存结构、溢出、调优

Java 本身不具有磁盘读写能力,需要调用操作系统提供的函数。

当 CPU 从用户态切换为内核态时,操作系统中会划分出一个系统缓冲区,Java 无法直接访问系统缓冲区,而堆中存在 Java 缓冲区,数据进入系统缓冲区再进入 Java 缓冲区就可以被 Java 访问。

两个缓冲区直接存在不必要的数据复制。

直接内存可以使系统缓冲区和 Java 缓冲区共享,使 Java 可以直接访问系统缓冲区的数据,减少了不必要的数据复制,适合文件的 IO 操作。

public class Demo1_9 {
    static final String FROM = "E:\\编程资料\\第三方教学视频\\youtube\\Getting Started with Spring Boot-sbPSjI4tt10.mp4";
    static final String TO = "E:\\a.mp4";
    static final int _1Mb = 1024 * 1024;

    public static void main(String[] args) {
        io();           // io 用时:1535.586957 1766.963399 1359.240226
        directBuffer(); // directBuffer 用时:479.295165 702.291454 562.56592
    }

    private static void directBuffer() {
        long start = System.nanoTime();
        try (FileChannel from = new FileInputStream(FROM).getChannel();
             FileChannel to = new FileOutputStream(TO).getChannel();
        ) {
            ByteBuffer bb = ByteBuffer.allocateDirect(_1Mb);
            while (true) {
                int len = from.read(bb);
                if (len == -1) {
                    break;
                }
                bb.flip();
                to.write(bb);
                bb.clear();
            }
        } catch (IOException e) {
            e.printStackTrace();
        }
        long end = System.nanoTime();
        System.out.println("directBuffer 用时:" + (end - start) / 1000_000.0);
    }

    private static void io() {
        long start = System.nanoTime();
        try (FileInputStream from = new FileInputStream(FROM);
             FileOutputStream to = new FileOutputStream(TO);
        ) {
            byte[] buf = new byte[_1Mb];
            while (true) {
                int len = from.read(buf);
                if (len == -1) {
                    break;
                }
                to.write(buf, 0, len);
            }
        } catch (IOException e) {
            e.printStackTrace();
        }
        long end = System.nanoTime();
        System.out.println("io 用时:" + (end - start) / 1000_000.0);
    }
}           

分配和回收原理

  • ByteBuffer 使用了 Unsafe 对象完成直接内存的分配回收,并且回收需要主动调用 freeMemory 方法
  • ByteBuffer 的实现类内部,使用了 Cleaner (虚引用)来监测 ByteBuffer 对象,一旦 ByteBuffer 对象被垃圾回收,那么就会由 ReferenceHandler 线程通过 Cleaner 的 clean方法调用 freeMemory 来释放直接内存

ByteBuffer 的 allocateDirect 方法

public static ByteBuffer allocateDirect(int capacity) {
        return new DirectByteBuffer(capacity);
    }           

DirectByteBuffer 对象

// Primary constructor
    //
    DirectByteBuffer(int cap) {                   // package-private

        super(-1, 0, cap, cap);
        boolean pa = VM.isDirectMemoryPageAligned();
        int ps = Bits.pageSize();
        long size = Math.max(1L, (long)cap + (pa ? ps : 0));
        Bits.reserveMemory(size, cap);

        long base = 0;
        try {   
            base = unsafe.allocateMemory(size);   // 调用了 unsafe 类的 allocateMemory 方法
        } catch (OutOfMemoryError x) {
            Bits.unreserveMemory(size, cap);
            throw x;
        }
        unsafe.setMemory(base, size, (byte) 0);    
        if (pa && (base % ps != 0)) {
            // Round up to page boundary
            address = base + ps - (base & (ps - 1));
        } else {
            address = base;
        }
        cleaner = Cleaner.create(this, new Deallocator(base, size, cap));  // Cleaner 虚引用监控 DirectByteBuffer 对象
        att = null;
    }           

Cleanr 对象的 clean 方法

public void clean() {
        if (remove(this)) {
            try {
                this.thunk.run();   // 执行任务对象
            } catch (final Throwable var2) {
                AccessController.doPrivileged(new PrivilegedAction<Void>() {
                    public Void run() {
                        if (System.err != null) {
                            (new Error("Cleaner terminated abnormally", var2)).printStackTrace();
                        }

                        System.exit(1);
                        return null;
                    }
                });
            }

        }
    }           

Deallocator 任务对象

private static class Deallocator
        implements Runnable
    {

        private static Unsafe unsafe = Unsafe.getUnsafe();

        private long address;
        private long size;
        private int capacity;

        private Deallocator(long address, long size, int capacity) {
            assert (address != 0);
            this.address = address;
            this.size = size;
            this.capacity = capacity;
        }

        public void run() {
            if (address == 0) {
                // Paranoia
                return;
            }
            unsafe.freeMemory(address);
            address = 0;
            Bits.unreserveMemory(size, capacity); 
        }

    }           

DirectByteBuffer 这个 Java 对象被垃圾回收器调用的时候,会触发虚引用对象 Cleaner 中的 clean 方法,执行任务对象 Deallocator,调用任务对象中的 freeMemory 去释放直接内存。

禁用显式垃圾回收

禁用显式垃圾回收

-XX:+DisableExplicitGC // 禁用显式的 System.gc()           

System.gc() 触发的是 Full GC,回收新生代和老年代,程序暂停时间长,JVM 调优的时候可能会禁用掉,防止无意使用 System.gc() 。

但是禁用显式的 System.gc() ,直接内存不能被即时释放,可以通过直接调用 Unsafe 的 freeMemory 方法手动管理回收直接内存。

static int _1Gb = 1024 * 1024 * 1024;

    public static void main(String[] args) throws IOException {
        Unsafe unsafe = getUnsafe();
        // 分配内存
        long base = unsafe.allocateMemory(_1Gb);
        unsafe.setMemory(base, _1Gb, (byte) 0);
        System.in.read();

        // 释放内存
        unsafe.freeMemory(base);
        System.in.read();
    }

    public static Unsafe getUnsafe() {
        try {
            Field f = Unsafe.class.getDeclaredField("theUnsafe");
            f.setAccessible(true);
            Unsafe unsafe = (Unsafe) f.get(null);
            return unsafe;
        } catch (NoSuchFieldException | IllegalAccessException e) {
            throw new RuntimeException(e);
        }
    }           

继续阅读