分类分析--选择预测效果最好的解
预测准确性度量

下面给出计算这几个统计量的函数:
评估二分类准确性:
performance <- function(table, n=2){
if(!all(dim(table) == c(2,2)))
stop("Must be a 2 x 2 table")
(1)第一步:得到频数
tn = table[1,1]
fp = table[1,2]
fn = table[2,1]
tp = table[2,2]
(2)第二步:计算统计量
sensitivity = tp/(tp+fn)
specificity = tn/(tn+fp)
ppp = tp/(tp+fp)
npp = tn/(tn+fn)
hitrate = (tp+tn)/(tp+tn+fp+fn)
(3)第三步:输出结果
result <- paste("Sensitivity = ", round(sensitivity, n) ,
"\nSpecificity = ", round(specificity, n),
"\nPositive Predictive Value = ", round(ppp, n),
"\nNegative Predictive Value = ", round(npp, n),
"\nAccuracy = ", round(hitrate, n), "\n", sep="")
cat(result)
}
以下代码清单将performance()函数用于上述提到的五个分类器:
逻辑回归
传统决策树
条件推断树
随机森林(决策树)
随机森林(条件推断树)
支持向量机(无调和参数)
支持向量机(有调和参数)
作者:zhang-X,转载请注明原文链接