分類分析--選擇預測效果最好的解
預測準确性度量

下面給出計算這幾個統計量的函數:
評估二分類準确性:
performance <- function(table, n=2){
if(!all(dim(table) == c(2,2)))
stop("Must be a 2 x 2 table")
(1)第一步:得到頻數
tn = table[1,1]
fp = table[1,2]
fn = table[2,1]
tp = table[2,2]
(2)第二步:計算統計量
sensitivity = tp/(tp+fn)
specificity = tn/(tn+fp)
ppp = tp/(tp+fp)
npp = tn/(tn+fn)
hitrate = (tp+tn)/(tp+tn+fp+fn)
(3)第三步:輸出結果
result <- paste("Sensitivity = ", round(sensitivity, n) ,
"\nSpecificity = ", round(specificity, n),
"\nPositive Predictive Value = ", round(ppp, n),
"\nNegative Predictive Value = ", round(npp, n),
"\nAccuracy = ", round(hitrate, n), "\n", sep="")
cat(result)
}
以下代碼清單将performance()函數用于上述提到的五個分類器:
邏輯回歸
傳統決策樹
條件推斷樹
随機森林(決策樹)
随機森林(條件推斷樹)
支援向量機(無調和參數)
支援向量機(有調和參數)
作者:zhang-X,轉載請注明原文連結