天天看点

Nginx 性能优化(突破十万并发)

一般来说nginx配置文件中对优化比较有作用的为以下几项:

worker_processes 8;

nginx进程数,建议按照cpu数目来指定,一般为它的倍数。

worker_cpu_affinity 00000001 00000010 00000100 00001000 00010000 00100000 01000000 10000000;

为每个进程分配cpu,上例中将8个进程分配到8个cpu,当然可以写多个,或者将一个进程分配到多个cpu。

worker_rlimit_nofile 102400;

这个指令是指当一个nginx进程打开的最多文件描述符数目,理论值应该是最多打开文件数(ulimit -n)与nginx进程数相除,但是nginx分配请求并不是那么均匀,所以最好与ulimit -n的值保持一致。

use epoll;

使用epoll的I/O模型,这个不用说了吧。

worker_connections 102400;

每个进程允许的最多连接数,理论上每台nginx服务器的最大连接数为worker_processes*worker_connections。

keepalive_timeout 60;

keepalive超时时间。

client_header_buffer_size 4k;

客户端请求头部的缓冲区大小,这个可以根据你的系统分页大小来设置,一般一个请求的头部大小不会超过1k,不过由于一般系统分页都要大于1k,所以这里设置为分页大小。分页大小可以用命令getconf PAGESIZE取得。

open_file_cache max=102400 inactive=20s;

这个将为打开文件指定缓存,默认是没有启用的,max指定缓存数量,建议和打开文件数一致,inactive是指经过多长时间文件没被请求后删除缓存。

open_file_cache_valid 30s;

这个是指多长时间检查一次缓存的有效信息。

open_file_cache_min_uses 1;

open_file_cache指令中的inactive参数时间内文件的最少使用次数,如果超过这个数字,文件描述符一直是在缓存中打开的,如上例,如果有一个文件在inactive时间内一次没被使用,它将被移除。

关于内核参数的优化:

http://yangrong.blog.51cto.com/6945369/1321594 

net.ipv4.tcp_max_tw_buckets = 6000

timewait的数量,默认是180000。(Deven:因此如果想把timewait降下了就要把tcp_max_tw_buckets值减小)

net.ipv4.ip_local_port_range = 1024     65000

# 默认值:32768   61000
# 作用:可用端口的范围      

允许系统打开的端口范围。

net.ipv4.tcp_tw_recycle = 1

也就是说,开启了快速回收是TIME_WAIT的状态持续700ms,而不是正常的2MSL(Linux是1分钟,请参考:include/net/tcp.h 109行TCP_TIMEWAIT_LEN定义,by deven其实我们请求一个php文件,然后查看TIME_WAIT 多久消失就知道了)。

启用timewait快速回收。

net.ipv4.tcp_tw_reuse = 1

开启重用。允许将TIME-WAIT sockets重新用于新的TCP连接。

net.ipv4.tcp_syncookies = 1

开启SYN Cookies,当出现SYN等待队列溢出时,启用cookies来处理。

net.core.somaxconn = 262144

# 默认值:128
# 作用:已经成功建立连接的套接字将要进入队列的长度      

web应用中listen函数的backlog默认会给我们内核参数的net.core.somaxconn限制到128,而nginx定义的NGX_LISTEN_BACKLOG默认为511,所以有必要调整这个值。

net.core.netdev_max_backlog = 262144

# 默认值:1000
# 作用:网卡设备将请求放入队列的长度      

每个网络接口接收数据包的速率比内核处理这些包的速率快时,允许送到队列的数据包的最大数目。

net.ipv4.tcp_max_orphans = 262144

系统中最多有多少个TCP套接字不被关联到任何一个用户文件句柄上。如果超过这个数字,孤儿连接将即刻被复位并打印出警告信息。这个限制仅仅是为了防止简单的DoS攻击,不能过分依靠它或者人为地减小这个值,更应该增加这个值(如果增加了内存之后)。

net.ipv4.tcp_max_syn_backlog = 262144

记录的那些尚未收到客户端确认信息的连接请求的最大值。对于有128M内存的系统而言,缺省值是1024,小内存的系统则是128。

net.ipv4.tcp_timestamps = 0

时间戳可以避免序列号的卷绕。一个1Gbps的链路肯定会遇到以前用过的序列号。时间戳能够让内核接受这种“异常”的数据包。这里需要将其关掉。

net.ipv4.tcp_synack_retries = 1

为了打开对端的连接,内核需要发送一个SYN并附带一个回应前面一个SYN的ACK。也就是所谓三次握手中的第二次握手。这个设置决定了内核放弃连接之前发送SYN+ACK包的数量。

net.ipv4.tcp_syn_retries = 1

在内核放弃建立连接之前发送SYN包的数量。

net.ipv4.tcp_fin_timeout = 10

# 默认值:60
# 作用:TCP时间戳      

如果套接字由本端要求关闭,这个参数 决定了它保持在FIN-WAIT-2状态的时间。对端可以出错并永远不关闭连接,甚至意外当机。缺省值是60秒。2.2  内核的通常值是180秒,你可以按这个设置,但要记住的是,即使你的机器是一个轻载的WEB服务器,也有因为大量的死套接字而内存溢出的风险,FIN-  WAIT-2的危险性比FIN-WAIT-1要小,因为它最多只能吃掉1.5K内存,但是它们的生存期长些。

net.ipv4.tcp_keepalive_time = 30

当keepalive起用的时候,TCP发送keepalive消息的频度。缺省是2小时。

######################## cat /proc/sys/net/ipv4/tcp_keepalive_intvl 
# 默认值:75
# 作用:探测失败后,间隔几秒后重新探测
net.ipv4.tcp_keepalive_intvl = 30

######################## cat /proc/sys/net/ipv4/tcp_keepalive_probes 
# 默认值:9
# 作用:探测失败后,最多尝试探测几次
net.ipv4.tcp_keepalive_probes = 3

######################## cat /proc/sys/net/ipv4/tcp_keepalive_time 
# 默认值:7200
# 作用:间隔多久发送1次keepalive探测包
net.ipv4.tcp_keepalive_time = 1200      

tcp_keepalive_time :INTEGER

默认值是7200(2小时)

当keepalive打开的情况下,TCP发送keepalive消息的频率。(由于目前网络攻击等因素,造成了利用这个进行的攻击很频繁,曾经也有cu的朋友提到过,说如果2边建立了连接,然后不发送任何数据或者rst/fin消息,那么持续的时间是不是就是2小时,空连接攻击? tcp_keepalive_time就是预防此情形的.我个人在做nat服务的时候的修改值为1800秒)

tcp_keepalive_probes:INTEGER

默认值是9

TCP发送keepalive探测以确定该连接已经断开的次数。(注意:保持连接仅在SO_KEEPALIVE套接字选项被打开是才发送.次数默认不需要修改,当然根据情形也可以适当地缩短此值.设置为5比较合适)

tcp_keepalive_intvl:INTEGER

默认值为75

探测消息发送的频率,乘以tcp_keepalive_probes就得到对于从开始探测以来没有响应的连接杀除的时间。默认值为75秒,也就是没有活动的连接将在大约11分钟以后将被丢弃。(对于普通应用来说,这个值有一些偏大,可以根据需要改小.特别是web类服务器需要改小该值,15是个比较合适的值)

下面贴一个完整的内核优化设置:

引用

net.ipv4.ip_forward = 0

net.ipv4.conf.default.rp_filter = 1

net.ipv4.conf.default.accept_source_route = 0

kernel.sysrq = 0

kernel.core_uses_pid = 1

kernel.msgmnb = 65536

kernel.msgmax = 65536

kernel.shmmax = 68719476736

kernel.shmall = 4294967296

net.ipv4.tcp_sack = 1

net.ipv4.tcp_window_scaling = 1

net.ipv4.tcp_rmem = 4096         87380   4194304

net.ipv4.tcp_wmem = 4096         16384   4194304

net.core.wmem_default = 8388608

net.core.rmem_default = 8388608

net.core.rmem_max = 16777216

net.core.wmem_max = 16777216

net.ipv4.tcp_max_orphans = 3276800

net.ipv4.tcp_mem = 94500000 915000000 927000000

net.ipv4.tcp_fin_timeout = 1

net.ipv4.ip_local_port_range = 1024     65000 

net.ipv4.ip_conntrack_max = 6553500

下面是一个简单的nginx配置文件:

user   www www;

worker_cpu_affinity 00000001 00000010 00000100 00001000 00010000 00100000 01000000;

error_log   /www/log/nginx_error.log   crit;

pid         /usr/local/nginx/nginx.pid;

worker_rlimit_nofile 204800;

events

{

   use epoll;

   worker_connections 204800;

}

http

   include       mime.types;

   default_type   application/octet-stream;

   charset   utf-8;

   server_names_hash_bucket_size 128;

   client_header_buffer_size 2k;

   large_client_header_buffers 4 4k;

   client_max_body_size 8m;

   sendfile on;

   tcp_nopush     on;

   keepalive_timeout 60;

   fastcgi_cache_path /usr/local/nginx/fastcgi_cache levels=1:2

                 keys_zone=TEST:10m

                 inactive=5m;

   fastcgi_connect_timeout 300;

   fastcgi_send_timeout 300;

   fastcgi_read_timeout 300;

   fastcgi_buffer_size 16k;

   fastcgi_buffers 16 16k;

   fastcgi_busy_buffers_size 16k;

   fastcgi_temp_file_write_size 16k;

   fastcgi_cache TEST;

   fastcgi_cache_valid 200 302 1h;

   fastcgi_cache_valid 301 1d;

   fastcgi_cache_valid any 1m;

   fastcgi_cache_min_uses 1;

   fastcgi_cache_use_stale error timeout invalid_header http_500;  

   open_file_cache max=204800 inactive=20s;

   open_file_cache_min_uses 1;

   open_file_cache_valid 30s;  

   tcp_nodelay on;

   gzip on;

   gzip_min_length   1k;

   gzip_buffers     4 16k;

   gzip_http_version 1.0;

   gzip_comp_level 2;

   gzip_types       text/plain application/x-javascript text/css application/xml;

   gzip_vary on;

   server

   {

     listen       8080;

     server_name   backup.aiju.com;

     index index.php index.htm;

     root   /www/html/;

     location /status

     {

         stub_status on;

     }

     location ~ .*\.(php|php5)?$

         fastcgi_pass 127.0.0.1:9000;

         fastcgi_index index.php;

         include fcgi.conf;

     location ~ .*\.(gif|jpg|jpeg|png|bmp|swf|js|css)$

       expires       30d;

     log_format   access   '$remote_addr - $remote_user [$time_local] "$request" '

               '$status $body_bytes_sent "$http_referer" '

               '"$http_user_agent" $http_x_forwarded_for';

     access_log   /www/log/access.log   access;

       }

关于FastCGI的几个指令:

fastcgi_cache_path /usr/local/nginx/fastcgi_cache levels=1:2 keys_zone=TEST:10m inactive=5m;

这个指令为FastCGI缓存指定一个路径,目录结构等级,关键字区域存储时间和非活动删除时间。

fastcgi_connect_timeout 300;

指定连接到后端FastCGI的超时时间。

fastcgi_send_timeout 300;

向FastCGI传送请求的超时时间,这个值是指已经完成两次握手后向FastCGI传送请求的超时时间。

fastcgi_read_timeout 300;

接收FastCGI应答的超时时间,这个值是指已经完成两次握手后接收FastCGI应答的超时时间。

fastcgi_buffer_size 16k;

指定读取FastCGI应答第一部分 需要用多大的缓冲区,这里可以设置为fastcgi_buffers指令指定的缓冲区大小,上面的指令指定它将使用1个  16k的缓冲区去读取应答的第一部分,即应答头,其实这个应答头一般情况下都很小(不会超过1k),但是你如果在fastcgi_buffers指令中指 定了缓冲区的大小,那么它也会分配一个fastcgi_buffers指定的缓冲区大小去缓存。

fastcgi_buffers 16 16k;

指定本地需要用多少和多大的缓冲区来 缓冲FastCGI的应答,如上所示,如果一个php脚本所产生的页面大小为256k,则会为其分配16个16k的缓冲区来缓存,如果大于256k,增大 于256k的部分会缓存到fastcgi_temp指定的路径中,当然这对服务器负载来说是不明智的方案,因为内存中处理数据速度要快于硬盘,通常这个值 的设置应该选择一个你的站点中的php脚本所产生的页面大小的中间值,比如你的站点大部分脚本所产生的页面大小为 256k就可以把这个值设置为16  16k,或者4 64k 或者64 4k,但很显然,后两种并不是好的设置方法,因为如果产生的页面只有32k,如果用4  64k它会分配1个64k的缓冲区去缓存,而如果使用64 4k它会分配8个4k的缓冲区去缓存,而如果使用16  16k则它会分配2个16k去缓存页面,这样看起来似乎更加合理。

fastcgi_busy_buffers_size 32k;

这个指令我也不知道是做什么用,只知道默认值是fastcgi_buffers的两倍。

fastcgi_temp_file_write_size 32k;

在写入fastcgi_temp_path时将用多大的数据块,默认值是fastcgi_buffers的两倍。

fastcgi_cache TEST

开启FastCGI缓存并且为其制定一个名称。个人感觉开启缓存非常有用,可以有效降低CPU负载,并且防止502错误。但是这个缓存会引起很多问题,因为它缓存的是动态页面。具体使用还需根据自己的需求。

fastcgi_cache_valid 200 302 1h;

fastcgi_cache_valid 301 1d;

fastcgi_cache_valid any 1m;

为指定的应答代码指定缓存时间,如上例中将200,302应答缓存一小时,301应答缓存1天,其他为1分钟。

fastcgi_cache_min_uses 1;

缓存在fastcgi_cache_path指令inactive参数值时间内的最少使用次数,如上例,如果在5分钟内某文件1次也没有被使用,那么这个文件将被移除。

fastcgi_cache_use_stale error timeout invalid_header http_500;

不知道这个参数的作用,猜想应该是让nginx知道哪些类型的缓存是没用的。

以上为nginx中FastCGI相关参数,另外,FastCGI自身也有一些配置需要进行优化,如果你使用php-fpm来管理FastCGI,可以修改配置文件中的以下值:

<value name="max_children">60</value>

同时处理的并发请求数,即它将开启最多60个子线程来处理并发连接。

<value name="rlimit_files">102400</value>

最多打开文件数。

<value name="max_requests">204800</value>

每个进程在重置之前能够执行的最多请求数。

转自:http://hi.baidu.com/jaywang141/blog/item/a85328dfc869faf376c63899.html

Deven:Nginx优化记住几点差不多了

worker_processes、worker_connections 、worker_rlimit_nofile、keepalive_timeout 60、#开启压缩gzip on、设置图片样式JS等静态文件过期时间、关闭nginx分php文件访问日志以便节省IO

因为TCP连接是双向的,所以在关闭连接的时候,两个方向各自都需要关闭。先发FIN包的一方执行的是主动关闭;后发FIN包的一方执行的是被动关闭。主动关闭的一方会进入TIME_WAIT状态,并且在此状态停留两倍的MSL时长

.穿插一点MSL的知识:MSL指的是报文段的最大生存时间,如果报文段在网络活动了MSL时间,还没有被接收,那么会被丢弃。关于MSL的大小,协议中给出的建议是两分钟,不过实际上不同的操作系统可能有不同的设置,以Linux为例,通常是半分钟,两倍的MSL就是一分钟,也就是60秒,并且这个数值是硬编码在内核中的,也就是说除非你重新编译内核,否则没法修改它.如果每秒的连接数是一千的话,那么一分钟就可能会产生六万个TIME_WAIT。为什么主动关闭的一方不直接进入CLOSED状态,而是进入TIME_WAIT状态,并且停留两倍的MSL时长呢?这是因为TCP是一个建立在不可靠网络上的可靠的协议,主动关闭的一方收到被动关闭的一方发出的FIN包后,回应ACK包,同时进入TIME_WAIT状态,但是因为网络原因,主动关闭的一方发送的这个ACK包很可能延迟,从而触发被动连接一方重传FIN包。极端情况下,这一去一回,就是两倍的MSL时长。如果主动关闭的一方跳过TIME_WAIT直接进入CLOSED,或者在TIME_WAIT停留的时长不足两倍的MSL,那么当被动关闭的一方早先发出的延迟包到达后,就可能出现类似下面的问题:

1.旧的TCP连接已经不存在了,系统此时只能返回RST包

2.新的TCP连接被建立起来了,延迟包可能干扰新的连接

不管是哪种情况都会让TCP不在可靠,所以TIME_WAIT状态有存在的必要性

如何控制TIME_WAIT的数量?

从前面的描述我们可以得出这样的结论:TIME_WAIT这东西没有的话不行,有的话太多也是个麻烦事。下面让我们看看有哪些方法可以控制TIME_WAIT数量,这里只说一些常规方法,另外一些诸如SO_LINGER之类的方法太过偏门,略过不谈。

(1)ip_conntrack顾名思义就是跟踪连接。一旦激活了此模块,就能在系统参数里发现很多用来控制网络连接状态超时的设置,其中自然也包括TIME_WAIT:

 modprobe ip_conntrack

 sysctl net.ipv4.netfilter.ip_conntrack_tcp_timeout_time_wait

我们可以尝试缩小它的设置,比如十秒,甚至一秒,具体设置成多少合适取决于网络情况而定,当然也可以参考相关的案例。不过就我的个人意见来说,ip_conntrack引入的问题比解决的还多,比如性能会大幅下降,所以不建议使用。

(2)tcp_tw_recycle

顾名思义就是回收TIME_WAIT连接。可以说这个内核参数已经变成了大众处理TIME_WAIT的万金油,如果你在网络上搜索TIME_WAIT的解决方案,十有八九会推荐设置它,不过这里隐藏着一个不易察觉的陷阱当多个客户端通过NAT方式联网并与服务端交互时,服务端看到的是同一个IP,也就是说对服务端而言这些客户端实际上等同于一个,可惜由于这些客户端的时间戳可能存在差异,于是乎从服务端的视角看,便可能出现时间戳错乱的现象,进而直接导致时间戳小的数据包被丢弃。

(3)tcp_tw_reuse

顾名思义就是复用TIME_WAIT连接。当创建新连接的时候,如果可能的话会考虑复用相应的TIME_WAIT连接。通常认为「tcp_tw_reuse」比「tcp_tw_recycle」安全一些,官方文档里是这样说的:如果从协议视角看它是安全的,那么就可以使用。这简直就是外交辞令啊!按我的看法,如果网络比较稳定,比如都是内网连接,那么就可以尝试使用,毕竟此时出现前面提的延迟包的可能性微乎其微。不过需要注意的是在哪里使用,既然我们要复用连接,那么当然应该在连接的发起方使用,而不能在被连接方使用。举例来说:客户端向服务端发起HTTP请求,服务端响应后主动关闭连接,于是TIME_WAIT便留在了服务端,此类情况使用「tcp_tw_reuse」是无效的,因为服务端是被连接方,所以不存在复用连接一说。让我们延伸一点来看,比如说服务端是PHP,它查询另一个MySQL服务端,然后主动断开连接,于是TIME_WAIT就落在了PHP一侧,此类情况下使用「tcp_tw_reuse」是有效的,因为此时PHP相对于MySQL而言是客户端,它是连接的发起方,所以可以复用连接。