天天看点

keras版本模型训练

相关函数

构建模型(顺序模型、函数式模型、子类模型)

模型训练:model.fit()

模型验证:model.evaluate()

模型预测: model.predict()

使用样本加权和类别加权

ModelCheckpoint:定期保存模型。

TensorBoard:定期编写可在TensorBoard中可视化的模型日志

EarlyStopping:当培训不再改善验证指标时,停止培训。

CSVLogger:将损失和指标数据流式传输到CSV文件。

keras版本模型训练

提供许多内置的优化器,损失和指标

通常,不必从头开始创建自己的损失,指标或优化函数,因为所需的可能已经是Keras API的一部分:

优化器:

SGD() (有或没有动量)

RMSprop()

Adam()

损失:

MeanSquaredError()

KLDivergence()

CosineSimilarity()

指标:

AUC()

Precision()

Recall()

另外,如果想用上述的默认设置,那么在很多情况下,可以通过字符串标识符指定优化器,损失和指标:

通过将数据切成大小为“ batch_size”的“批”来训练模型,并针对给定数量的“epoch”重复遍历整个数据集

keras版本模型训练

自动划分验证集

在前面的例子中,我们使用validation_data参数将Numpy数组的元组传递(x_val, y_val)给模型,以在每个时期结束时评估验证损失和验证指标。

还有一个选择:参数validation_split允许您自动保留部分训练数据以供验证。参数值代表要保留用于验证的数据的一部分,因此应将其设置为大于0且小于1的数字。例如,validation_split=0.2表示“使用20%的数据进行验证”,而validation_split=0.6表示“使用60%的数据用于验证”。

验证的计算方法是在进行任何改组之前,对fit调用接收到的数组进行最后x%的采样。

注意,只能validation_split在使用Numpy数据进行训练时使用。

keras版本模型训练

返回 test loss 和metrics

keras版本模型训练

除了输入数据和目标数据外,还可以在使用时将样本权重或类权重传递给模型fit:

从Numpy数据进行训练时:通过sample_weight和class_weight参数。

从数据集训练时:通过使数据集返回一个元组(input_batch, target_batch, sample_weight_batch)。

“样本权重”数组是一个数字数组,用于指定批次中每个样本在计算总损失时应具有的权重。它通常用于不平衡的分类问题中(这种想法是为很少见的班级赋予更多的权重)。当所使用的权重为1和0时,该数组可用作损失函数的掩码(完全丢弃某些样本对总损失的贡献)。

“类别权重”字典是同一概念的一个更具体的实例:它将类别索引映射到应该用于属于该类别的样本的样本权重。例如,如果在数据中类“ 0”的表示量比类“ 1”的表示量少两倍,则可以使用class_weight={0: 1., 1: 0.5}。

这是一个Numpy示例,其中我们使用类权重或样本权重来更加重视第5类的正确分类。

模型加权

keras版本模型训练

sample_weight

keras版本模型训练

Keras中的回调是在训练期间(在某个时期开始时,在批处理结束时,在某个时期结束时等)在不同时间点调用的对象,这些对象可用于实现以下行为:

在训练过程中的不同时间点进行验证(除了内置的按时间段验证)

定期或在超过特定精度阈值时对模型进行检查

当训练似乎停滞不前时,更改模型的学习率

当训练似乎停滞不前时,对顶层进行微调

在训练结束或超出特定性能阈值时发送电子邮件或即时消息通知

等等。

回调可以作为列表传递给model.fit:

monitor: 被监测的数据。

min_delta: 在被监测的数据中被认为是提升的最小变化, 例如,小于 min_delta 的绝对变化会被认为没有提升。

patience: 没有进步的训练轮数,在这之后训练就会被停止。

verbose: 详细信息模式。

mode: {auto, min, max} 其中之一。 在 min 模式中, 当被监测的数据停止下降,训练就会停止;在 max 模式中,当被监测的数据停止上升,训练就会停止;在 auto 模式中,方向会自动从被监测的数据的名字中判断出来。

keras版本模型训练

ModelCheckpoint:定期保存模型。

EarlyStopping:当培训不再改善验证指标时,停止培训。

TensorBoard:定期编写可在TensorBoard中可视化的模型日志(更多详细信息,请参见“可视化”部分)。

CSVLogger:将损失和指标数据流式传输到CSV文件。

等等

在相对较大的数据集上训练模型时,至关重要的是要定期保存模型的checkpoint。

最简单的方法是使用ModelCheckpoint回调:

keras版本模型训练

由于优化程序无法访问验证指标,因此无法使用这些计划对象来实现动态学习率计划(例如,当验证损失不再改善时降低学习率)。

但是,回调确实可以访问所有指标,包括验证指标!因此,可以通过使用回调来修改优化程序上的当前学习率,从而实现此模式。实际上,它是作为ReduceLROnPlateau回调内置的。

ReduceLROnPlateau参数

monitor: 被监测的指标。

factor: 学习速率被降低的因数。新的学习速率 = 学习速率 * 因数

patience: 没有进步的训练轮数,在这之后训练速率会被降低。

verbose: 整数。0:安静,1:更新信息。

mode: {auto, min, max} 其中之一。如果是 min 模式,学习速率会被降低如果被监测的数据已经停止下降; 在 max 模式,学习塑料会被降低如果被监测的数据已经停止上升; 在 auto 模式,方向会被从被监测的数据中自动推断出来。

min_delta: 衡量新的最佳阈值,仅关注重大变化。

cooldown: 在学习速率被降低之后,重新恢复正常操作之前等待的训练轮数量。

min_lr: 学习速率的下边界。