modular inverse
time limit: 2 seconds memory limit: 65536 kb
the modular modular multiplicative inverse of an integer a modulo m is an integer x such that <code>a-1≡x (mod m)</code>.
this is equivalent to <code>ax≡1 (mod m)</code>.
there are multiple test cases. the first line of input is an integer t ≈ 2000 indicating the number of test cases.
each test case contains two integers 0 < a ≤ 1000 and 0 < m ≤ 1000.
for each test case, output the smallest positive x. if such x doesn‘t exist, output "not exist".
模線性方程ax=b (mod n),令d=exgcd(a,n),該方程有解的充要條件為 d | b ,即 b% d==0
方程ax=b(mod n)的最小解 :x=(x*(b/d))%n
方程ax=b(mod n)的最整數小解: x=(x%(n/d)+n/d)%(n/d)
因為要求輸出最小整數,是以如果答案為0的話,肯定是m=1的情況,此情況應輸出1.