android系統鬧鐘定時功能架構,總體來說就是用資料庫存儲定時資料,有一個狀态管理器來統一管理這些定時狀态的觸發和更新。在andriod系統中實作定時功能,最終還是要用到系統提供的alarmmanager,隻是當一個定時完成後怎麼繼續處理,或者中間怎麼更新定時的時間或者狀态,像鬧鐘這種應用程式,每天重複定時,或者一周選擇其中的幾天,鬧鐘響了延遲5分鐘再次響鈴,這時候就需要想一種好的辦法來讓管理這些資料和狀态,下面就分析一下android系統鬧鐘的實作。
代表一條定時資料
代表一個定時項目的執行個體,一個alarminstance對應到一個alarm,相比alarm多存儲了一些狀态資訊
狀态管理器,對定時項目進行排程,添加、删除、更改狀态,是一個broadcastreciever,定時到點後發廣播到這裡進行下一步處理
響應結果,也就是定時到達後要做的事,響鈴,停止響鈴
裡面建立了三個表,alarms_table,instance_table,cities_table,前兩個分别對應到上面的alarm和alarminstance。
private static void createalarmstable(sqlitedatabase db) {
db.execsql("create table " + alarms_table_name + " (" +
clockcontract.alarmscolumns._id + " integer primary key," +
clockcontract.alarmscolumns.hour + " integer not null, " +
clockcontract.alarmscolumns.minutes + " integer not null, " +
clockcontract.alarmscolumns.days_of_week + " integer not null, " +
clockcontract.alarmscolumns.enabled + " integer not null, " +
clockcontract.alarmscolumns.vibrate + " integer not null, " +
clockcontract.alarmscolumns.label + " text not null, " +
clockcontract.alarmscolumns.ringtone + " text, " +
clockcontract.alarmscolumns.delete_after_use + " integer not null default 0);");
log.i("alarms table created");
}
private static void createinstancetable(sqlitedatabase db) {
db.execsql("create table " + instances_table_name + " (" +
clockcontract.instancescolumns._id + " integer primary key," +
clockcontract.instancescolumns.year + " integer not null, " +
clockcontract.instancescolumns.month + " integer not null, " +
clockcontract.instancescolumns.day + " integer not null, " +
clockcontract.instancescolumns.hour + " integer not null, " +
clockcontract.instancescolumns.minutes + " integer not null, " +
clockcontract.instancescolumns.vibrate + " integer not null, " +
clockcontract.instancescolumns.label + " text not null, " +
clockcontract.instancescolumns.ringtone + " text, " +
clockcontract.instancescolumns.alarm_state + " integer not null, " +
clockcontract.instancescolumns.alarm_id + " integer references " +
alarms_table_name + "(" + clockcontract.alarmscolumns._id + ") " +
"on update cascade on delete cascade" +
");");
log.i("instance table created");
這裡說一下幾個特殊的字段,對于alarm表,days_of_week表示一周内需要定時的天(鬧鐘有個功能是選擇一周中的幾天),這裡是個int值,用位來表示設定的天數,源碼中有個專門的類daysofweek來存儲和處理。
alarminstance表中有一個alarm_id,關聯到一個alarm,可以看到在alarminstance表裡也有時間,為什麼不和alarm表合成一個表?應該是這樣的,alarm表示原始的定時項,是一個基礎資料,而alarminstance則代表了一個使用中的定時項目,或者是一個已經激活的定時項目,它的時間是可以變化的,比如鬧鐘響了以後延時5分鐘再響,就需要改變這裡的時間,而基礎資料不能變,還需要顯示在那裡。alarm_state代表了目前定時項目的狀态,具體排程都在alarmstatemanager中管理。
忘了在哪裡看到的,“程式設計最重要的是設計資料結構,接下來是分解各種代碼塊”。資料結構是基礎,就像建築裡的鋼筋水泥磚瓦,有了基礎的材料後,剩下的工作就是對這些材料處理,也就是設計具體的處理邏輯。
從上面也可以看出,alarm類作為定時的基礎資料結構,主要是封裝了一些資料庫操作,完成增删改查功能。額外有一個方法createinstanceafter,根據自身來建立一個alarminstance執行個體。代碼如下
public alarminstance createinstanceafter(calendar time) {
calendar nextinstancetime = calendar.getinstance();
nextinstancetime.set(calendar.year, time.get(calendar.year));
nextinstancetime.set(calendar.month, time.get(calendar.month));
nextinstancetime.set(calendar.day_of_month, time.get(calendar.day_of_month));
nextinstancetime.set(calendar.hour_of_day, hour);
nextinstancetime.set(calendar.minute, minutes);
nextinstancetime.set(calendar.second, 0);
nextinstancetime.set(calendar.millisecond, 0);
// if we are still behind the passed in time, then add a day
if (nextinstancetime.gettimeinmillis() <= time.gettimeinmillis()) {
nextinstancetime.add(calendar.day_of_year, 1);
}
// the day of the week might be invalid, so find next valid one
int adddays = daysofweek.calculatedaystonextalarm(nextinstancetime);
if (adddays > 0) {
nextinstancetime.add(calendar.day_of_week, adddays);
alarminstance result = new alarminstance(nextinstancetime, id);
result.mvibrate = vibrate;
result.mlabel = label;
result.mringtone = alert;
return result;
alarminstance與alarm很相似,像alarm中的增删改查操作在alarminstance中都有相似的方法。那有什麼不同呢,就是上面說的alarminstance的時間是可以根據目前狀态改變的,也就多了時間的set和get方法。
public void setalarmtime(calendar calendar) {
myear = calendar.get(calendar.year);
mmonth = calendar.get(calendar.month);
mday = calendar.get(calendar.day_of_month);
mhour = calendar.get(calendar.hour_of_day);
mminute = calendar.get(calendar.minute);
/**
* return the time when a alarm should fire.
*
* @return the time
*/
public calendar getalarmtime() {
calendar calendar = calendar.getinstance();
calendar.set(calendar.year, myear);
calendar.set(calendar.month, mmonth);
calendar.set(calendar.day_of_month, mday);
calendar.set(calendar.hour_of_day, mhour);
calendar.set(calendar.minute, mminute);
calendar.set(calendar.second, 0);
calendar.set(calendar.millisecond, 0);
return calendar;
鬧鐘定時的核心邏輯就在這裡,alarmstatemanager就是管理所有定時項目狀态的排程器。
可以看到上面大多是static類型的方法,用于設定各種狀态值。
先看一下定時的幾種狀态:
silent_state,alarm被激活,但是不需要顯示任何東西,下一個狀态是low_notification_state;
low_notification_state,這個狀态表示alarm離觸發的時間不遠了,時間差是alarminstance.low_notification_hour_offset=-2,也就是2個小時。下一個狀态會進入high_notification_state,hide_notification_state,dismiss_state;
hide_notification_state,這是一個暫時态,表示使用者想隐藏掉通知,這個狀态會一直持續到high_notification_state;
high_notification_state,這個狀态和low_notification_state相似,但不允許使用者隐藏通知,負責觸發fired_state或者dismiss_state;
snoozed_state,像high_notification_state,但是會增加一點定時的時間來完成延遲功能;
fired_state,表示響鈴狀态,會啟動alarmservice直到使用者将其變為snoozed_state或者dismiss_state,如果使用者放任不管,會之後進入missed_state;
missed_state,這個狀态在fired_state之後,會在通知欄給出一個提醒剛才響鈴了;
dismiss_state,這個狀态表示定時結束了,會根據定時項目的設定判斷是否需要重複,進而決定要删除這個項目還是繼續設定一個新的定時。
上面的 setxxxstate 方法就是對這些狀态的處理,同時會規劃一個定時轉換到下一個狀态。比如setsilentstate:
public static void setsilentstate(context context, alarminstance instance) {
log.v("setting silent state to instance " + instance.mid);
// update alarm in db
contentresolver contentresolver = context.getcontentresolver();
instance.malarmstate = alarminstance.silent_state;
alarminstance.updateinstance(contentresolver, instance);
// setup instance notification and scheduling timers
alarmnotifications.clearnotification(context, instance);
scheduleinstancestatechange(context, instance.getlownotificationtime(),
instance, alarminstance.low_notification_state);
更新alarminstance的資訊,同時通過scheduleinstancestatechange()規劃下一個狀态:
private static void scheduleinstancestatechange(context context, calendar time,
alarminstance instance, int newstate) {
long timeinmillis = time.gettimeinmillis();
log.v("scheduling state change " + newstate + " to instance " + instance.mid +
" at " + alarmutils.getformattedtime(context, time) + " (" + timeinmillis + ")");
intent statechangeintent = createstatechangeintent(context, alarm_manager_tag, instance,
newstate);
pendingintent pendingintent = pendingintent.getbroadcast(context, instance.hashcode(),
statechangeintent, pendingintent.flag_update_current);
alarmmanager am = (alarmmanager) context.getsystemservice(context.alarm_service);
if (utils.iskitkatorlater()) {
am.setexact(alarmmanager.rtc_wakeup, timeinmillis, pendingintent);
} else {
am.set(alarmmanager.rtc_wakeup, timeinmillis, pendingintent);
}
通過alarmmanager發起一個定時,定時的時間從調用處可以看到是有alarminstance得到的,比如在setsilentstate()中的定時時間是instance.getlownotificationtime():
public calendar getlownotificationtime() {
calendar calendar = getalarmtime();
calendar.add(calendar.hour_of_day, low_notification_hour_offset);
return calendar;
low_notification_hour_offset值為-2,也就是在鬧鈴響之前的兩小時那一刻會發這個low_notification_state的廣播出來,alarmstatemanager接收到這個廣播處理再轉移到下一個。廣播的接收在onreciever方法中,
@override
public void onreceive(final context context, final intent intent) {
final pendingresult result = goasync();
final powermanager.wakelock wl = alarmalertwakelock.createpartialwakelock(context);
wl.acquire();
asynchandler.post(new runnable() {
@override
public void run() {
handleintent(context, intent);
result.finish();
wl.release();
}
});
private void handleintent(context context, intent intent) {
final string action = intent.getaction();
log.v("alarmstatemanager received intent " + intent);
if (change_state_action.equals(action)) {
uri uri = intent.getdata();
alarminstance instance = alarminstance.getinstance(context.getcontentresolver(),
alarminstance.getid(uri));
if (instance == null) {
// not a big deal, but it shouldn't happen
log.e("can not change state for unknown instance: " + uri);
return;
int globalid = getglobalintentid(context);
int intentid = intent.getintextra(alarm_global_id_extra, -1);
int alarmstate = intent.getintextra(alarm_state_extra, -1);
if (intentid != globalid) {
log.i("ignoring old intent. intentid: " + intentid + " globalid: " + globalid +
" alarmstate: " + alarmstate);
if (alarmstate >= 0) {
setalarmstate(context, instance, alarmstate);
} else {
registerinstance(context, instance, true);
} else if (show_and_dismiss_alarm_action.equals(action)) {
long alarmid = instance.malarmid == null ? alarm.invalid_id : instance.malarmid;
intent viewalarmintent = alarm.createintent(context, deskclock.class, alarmid);
viewalarmintent.putextra(deskclock.select_tab_intent_extra, deskclock.alarm_tab_index);
viewalarmintent.putextra(alarmclockfragment.scroll_to_alarm_intent_extra, alarmid);
viewalarmintent.addflags(intent.flag_activity_new_task);
context.startactivity(viewalarmintent);
setdismissstate(context, instance);
在handleintent方法中統一處理,狀态的分發在setalarmstate中:
public void setalarmstate(context context, alarminstance instance, int state) {
switch(state) {
case alarminstance.silent_state:
setsilentstate(context, instance);
break;
case alarminstance.low_notification_state:
setlownotificationstate(context, instance);
case alarminstance.hide_notification_state:
sethidenotificationstate(context, instance);
case alarminstance.high_notification_state:
sethighnotificationstate(context, instance);
case alarminstance.fired_state:
setfiredstate(context, instance);
case alarminstance.snooze_state:
setsnoozestate(context, instance);
case alarminstance.missed_state:
setmissedstate(context, instance);
case alarminstance.dismissed_state:
setdismissstate(context, instance);
default:
log.e("trying to change to unknown alarm state: " + state);
對沒一個state又轉移相應的setxxxstate方法中,完成下一次狀态的轉換,形成一個定時的循環,直到在dismissed_state裡停用或者删除定時項目,如果需要重複則擷取下一次定時的時間。
整體的架構就是這樣,在alarmstatemanager裡使用alarmmanager形成了一個定時的狀态機,不斷轉移到下一個狀态處理。