感謝網友【蔣小強】投稿。
如何合理地估算線程池大小?
這個問題雖然看起來很小,卻并不那麼容易回答。大家如果有更好的方法歡迎賜教,先來一個天真的估算方法:假設要求一個系統的TPS(Transaction Per Second或者Task Per Second)至少為20,然後假設每個Transaction由一個線程完成,繼續假設平均每個線程處理一個Transaction的時間為4s。那麼問題轉化為:
如何設計線程池大小,使得可以在1s内處理完20個Transaction?
計算過程很簡單,每個線程的處理能力為0.25TPS,那麼要達到20TPS,顯然需要20/0.25=80個線程。
很顯然這個估算方法很天真,因為它沒有考慮到CPU數目。一般伺服器的CPU核數為16或者32,如果有80個線程,那麼肯定會帶來太多不必要的線程上下文切換開銷。
再來第二種簡單的但不知是否可行的方法(N為CPU總核數):
- 如果是CPU密集型應用,則線程池大小設定為N+1
- 如果是IO密集型應用,則線程池大小設定為2N+1
如果一台伺服器上隻部署這一個應用并且隻有這一個線程池,那麼這種估算或許合理,具體還需自行測試驗證。
接下來在這個文檔:伺服器性能IO優化 中發現一個估算公式:
最佳線程數目 = ((線程等待時間+線程CPU時間)/線程CPU時間 )* CPU數目
比如平均每個線程CPU運作時間為0.5s,而線程等待時間(非CPU運作時間,比如IO)為1.5s,CPU核心數為8,那麼根據上面這個公式估算得到:((0.5+1.5)/0.5)*8=32。這個公式進一步轉化為:
最佳線程數目 = (線程等待時間與線程CPU時間之比 + 1)* CPU數目
可以得出一個結論:
線程等待時間所占比例越高,需要越多線程。線程CPU時間所占比例越高,需要越少線程。
上一種估算方法也和這個結論相合。
一個系統最快的部分是CPU,是以決定一個系統吞吐量上限的是CPU。增強CPU處理能力,可以提高系統吞吐量上限。但根據短闆效應,真實的系統吞吐量并不能單純根據CPU來計算。那要提高系統吞吐量,就需要從“系統短闆”(比如網絡延遲、IO)着手:
- 盡量提高短闆操作的并行化比率,比如多線程下載下傳技術
- 增強短闆能力,比如用NIO替代IO
第一條可以聯系到Amdahl定律,這條定律定義了串行系統并行化後的加速比計算公式:
加速比=優化前系統耗時 / 優化後系統耗時
加速比越大,表明系統并行化的優化效果越好。Addahl定律還給出了系統并行度、CPU數目和加速比的關系,加速比為Speedup,系統串行化比率(指串行執行代碼所占比率)為F,CPU數目為N:
Speedup <= 1 / (F + (1-F)/N)
當N足夠大時,串行化比率F越小,加速比Speedup越大。
寫到這裡,我突然冒出一個問題。
是否使用線程池就一定比使用單線程高效呢?
答案是否定的,比如Redis就是單線程的,但它卻非常高效,基本操作都能達到十萬量級/s。從線程這個角度來看,部分原因在于:
- 多線程帶來線程上下文切換開銷,單線程就沒有這種開銷
- 鎖
當然“Redis很快”更本質的原因在于:Redis基本都是記憶體操作,這種情況下單線程可以很高效地利用CPU。而多線程适用場景一般是:存在相當比例的IO和網絡操作。
是以即使有上面的簡單估算方法,也許看似合理,但實際上也未必合理,都需要結合系統真實情況(比如是IO密集型或者是CPU密集型或者是純記憶體操作)和硬體環境(CPU、記憶體、硬碟讀寫速度、網絡狀況等)來不斷嘗試達到一個符合實際的合理估算值。
最後來一個“Dark Magic”估算方法(因為我暫時還沒有搞懂它的原理),使用下面的類:
package pool_size_calculate;
import java.math.BigDecimal;
import java.math.RoundingMode;
import java.util.Timer;
import java.util.TimerTask;
import java.util.concurrent.BlockingQueue;
/**
- A class that calculates the optimal thread pool boundaries. It takes the
- desired target utilization and the desired work queue memory consumption as
- input and retuns thread count and work queue capacity.
- @author Niklas Schlimm
*/
public abstract class PoolSizeCalculator {
/**
* The sample queue size to calculate the size of a single {@link Runnable}
* element.
*/
private final int SAMPLE_QUEUE_SIZE = 1000;
/**
* Accuracy of test run. It must finish within 20ms of the testTime
* otherwise we retry the test. This could be configurable.
*/
private final int EPSYLON = 20;
/**
* Control variable for the CPU time investigation.
*/
private volatile boolean expired;
/**
* Time (millis) of the test run in the CPU time calculation.
*/
private final long testtime = 3000;
/**
* Calculates the boundaries of a thread pool for a given {@link Runnable}.
*
* @param targetUtilization
* the desired utilization of the CPUs (0 <= targetUtilization <= * 1) * @param targetQueueSizeBytes * the desired maximum work queue size of the thread pool (bytes) */ protected void calculateBoundaries(BigDecimal targetUtilization, BigDecimal targetQueueSizeBytes) { calculateOptimalCapacity(targetQueueSizeBytes); Runnable task = creatTask(); start(task); start(task); // warm up phase long cputime = getCurrentThreadCPUTime(); start(task); // test intervall cputime = getCurrentThreadCPUTime() - cputime; long waittime = (testtime * 1000000) - cputime; calculateOptimalThreadCount(cputime, waittime, targetUtilization); } private void calculateOptimalCapacity(BigDecimal targetQueueSizeBytes) { long mem = calculateMemoryUsage(); BigDecimal queueCapacity = targetQueueSizeBytes.divide(new BigDecimal( mem), RoundingMode.HALF_UP); System.out.println("Target queue memory usage (bytes): " + targetQueueSizeBytes); System.out.println("createTask() produced " + creatTask().getClass().getName() + " which took " + mem + " bytes in a queue"); System.out.println("Formula: " + targetQueueSizeBytes + " / " + mem); System.out.println("* Recommended queue capacity (bytes): " + queueCapacity); } /** * Brian Goetz' optimal thread count formula, see 'Java Concurrency in * Practice' (chapter 8.2) * * @param cpu * cpu time consumed by considered task * @param wait * wait time of considered task * @param targetUtilization * target utilization of the system */ private void calculateOptimalThreadCount(long cpu, long wait, BigDecimal targetUtilization) { BigDecimal waitTime = new BigDecimal(wait); BigDecimal computeTime = new BigDecimal(cpu); BigDecimal numberOfCPU = new BigDecimal(Runtime.getRuntime() .availableProcessors()); BigDecimal optimalthreadcount = numberOfCPU.multiply(targetUtilization) .multiply( new BigDecimal(1).add(waitTime.divide(computeTime, RoundingMode.HALF_UP))); System.out.println("Number of CPU: " + numberOfCPU); System.out.println("Target utilization: " + targetUtilization); System.out.println("Elapsed time (nanos): " + (testtime * 1000000)); System.out.println("Compute time (nanos): " + cpu); System.out.println("Wait time (nanos): " + wait); System.out.println("Formula: " + numberOfCPU + " * " + targetUtilization + " * (1 + " + waitTime + " / " + computeTime + ")"); System.out.println("* Optimal thread count: " + optimalthreadcount); } /** * Runs the {@link Runnable} over a period defined in {@link #testtime}. * Based on Heinz Kabbutz' ideas * (http://www.javaspecialists.eu/archive/Issue124.html). * * @param task * the runnable under investigation */ public void start(Runnable task) { long start = 0; int runs = 0; do { if (++runs > 5) {
throw new IllegalStateException("Test not accurate");
}
expired = false;
start = System.currentTimeMillis();
Timer timer = new Timer();
timer.schedule(new TimerTask() {
public void run() {
expired = true;
}
}, testtime);
while (!expired) {
task.run();
}
start = System.currentTimeMillis() - start;
timer.cancel();
} while (Math.abs(start - testtime) > EPSYLON);
collectGarbage(3);
}
private void collectGarbage(int times) {
for (int i = 0; i < times; i++) {
System.gc();
try {
Thread.sleep(10);
} catch (InterruptedException e) {
Thread.currentThread().interrupt();
break;
}
}
}
/**
* Calculates the memory usage of a single element in a work queue. Based on
* Heinz Kabbutz' ideas
* (http://www.javaspecialists.eu/archive/Issue029.html).
*
* @return memory usage of a single {@link Runnable} element in the thread
* pools work queue
*/
public long calculateMemoryUsage() {
BlockingQueue queue = createWorkQueue();
for (int i = 0; i < SAMPLE_QUEUE_SIZE; i++) {
queue.add(creatTask());
}
long mem0 = Runtime.getRuntime().totalMemory()
- Runtime.getRuntime().freeMemory();
long mem1 = Runtime.getRuntime().totalMemory()
- Runtime.getRuntime().freeMemory();
queue = null;
collectGarbage(15);
mem0 = Runtime.getRuntime().totalMemory()
- Runtime.getRuntime().freeMemory();
queue = createWorkQueue();
for (int i = 0; i < SAMPLE_QUEUE_SIZE; i++) {
queue.add(creatTask());
}
collectGarbage(15);
mem1 = Runtime.getRuntime().totalMemory()
- Runtime.getRuntime().freeMemory();
return (mem1 - mem0) / SAMPLE_QUEUE_SIZE;
}
/**
* Create your runnable task here.
*
* @return an instance of your runnable task under investigation
*/
protected abstract Runnable creatTask();
/**
* Return an instance of the queue used in the thread pool.
*
* @return queue instance
*/
protected abstract BlockingQueue createWorkQueue();
/**
* Calculate current cpu time. Various frameworks may be used here,
* depending on the operating system in use. (e.g.
* http://www.hyperic.com/products/sigar). The more accurate the CPU time
* measurement, the more accurate the results for thread count boundaries.
*
* @return current cpu time of current thread
*/
protected abstract long getCurrentThreadCPUTime();
}
然後自己繼承這個抽象類并實作它的三個抽象方法,比如下面是我寫的一個示例(任務是請求網絡資料),其中我指定期望CPU使用率為1.0(即100%),任務隊列總大小不超過100,000位元組:
package pool_size_calculate;
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.lang.management.ManagementFactory;
import java.math.BigDecimal;
import java.net.HttpURLConnection;
import java.net.URL;
import java.util.concurrent.BlockingQueue;
import java.util.concurrent.LinkedBlockingQueue;
public class SimplePoolSizeCaculatorImpl extends PoolSizeCalculator {
@Override
protected Runnable creatTask() {
return new AsyncIOTask();
}
@Override
protected BlockingQueue createWorkQueue() {
return new LinkedBlockingQueue(1000);
}
@Override
protected long getCurrentThreadCPUTime() {
return ManagementFactory.getThreadMXBean().getCurrentThreadCpuTime();
}
public static void main(String[] args) {
PoolSizeCalculator poolSizeCalculator = new SimplePoolSizeCaculatorImpl();
poolSizeCalculator.calculateBoundaries(new BigDecimal(1.0), new BigDecimal(100000));
}
}
/**
- 自定義的異步IO任務
- @author Will
class AsyncIOTask implements Runnable {
@Override
public void run() {
HttpURLConnection connection = null;
BufferedReader reader = null;
try {
String getURL = "http://baidu.com";
URL getUrl = new URL(getURL);
connection = (HttpURLConnection) getUrl.openConnection();
connection.connect();
reader = new BufferedReader(new InputStreamReader(
connection.getInputStream()));
String line;
while ((line = reader.readLine()) != null) {
// empty loop
}
}
catch (IOException e) {
} finally {
if(reader != null) {
try {
reader.close();
}
catch(Exception e) {
}
}
connection.disconnect();
}
}
得到的輸出如下:
Target queue memory usage (bytes): 100000
createTask() produced pool_size_calculate.AsyncIOTask which took 40 bytes in a queue
Formula: 100000 / 40
* Recommended queue capacity (bytes): 2500
Number of CPU: 4
Target utilization: 1
Elapsed time (nanos): 3000000000
Compute time (nanos): 47181000
Wait time (nanos): 2952819000
Formula: 4 * 1 * (1 + 2952819000 / 47181000)
* Optimal thread count: 256
推薦的任務隊列大小為2500,線程數為256,有點出乎意料之外。我可以如下構造一個線程池:
ThreadPoolExecutor pool =
new ThreadPoolExecutor(256, 256, 0L, TimeUnit.MILLISECONDS, new LinkedBlockingQueue(2500));
原創文章,轉載請注明: 轉載自并發程式設計網 – ifeve.com本文連結位址: 如何合理地估算線程池大小?

添加本文到我的收藏
Related posts:
- 并發工具類(一)等待多線程完成的CountDownLatch
- 并發工具類(二)同步屏障CyclicBarrier
- 線程池
- 跟着執行個體學習ZooKeeper的用法: 隊列
- Java鎖的種類以及辨析(四):可重入鎖
- Bug:LinkedTransferQueue的資料暫失和CPU爆滿以及修複
- 《 Java并發程式設計從入門到精通》 Java線程池的監控
- 如何建立并運作java線程
- AKKA文檔(Java版)—建立有限狀态機角色
- LockSupport 源碼閱讀
- 并發集合(四)用優先級對使用阻塞線程安全的清單排序
- JIT與可見性
- 《Java并發性和多線程介紹》-Java TheadLocal
- 并發集合(五)使用線程安全的、帶有延遲元素的清單
- 定制并發類(八)自定義在 Fork/Join 架構中運作的任務
原文位址:http://ifeve.com/how-to-calculate-threadpool-size/