天天看點

如何合理地估算線程池大小?

感謝網友【蔣小強】投稿。

如何合理地估算線程池大小?

這個問題雖然看起來很小,卻并不那麼容易回答。大家如果有更好的方法歡迎賜教,先來一個天真的估算方法:假設要求一個系統的TPS(Transaction Per Second或者Task Per Second)至少為20,然後假設每個Transaction由一個線程完成,繼續假設平均每個線程處理一個Transaction的時間為4s。那麼問題轉化為:

如何設計線程池大小,使得可以在1s内處理完20個Transaction?

計算過程很簡單,每個線程的處理能力為0.25TPS,那麼要達到20TPS,顯然需要20/0.25=80個線程。

很顯然這個估算方法很天真,因為它沒有考慮到CPU數目。一般伺服器的CPU核數為16或者32,如果有80個線程,那麼肯定會帶來太多不必要的線程上下文切換開銷。

再來第二種簡單的但不知是否可行的方法(N為CPU總核數):

  • 如果是CPU密集型應用,則線程池大小設定為N+1
  • 如果是IO密集型應用,則線程池大小設定為2N+1

如果一台伺服器上隻部署這一個應用并且隻有這一個線程池,那麼這種估算或許合理,具體還需自行測試驗證。

接下來在這個文檔:伺服器性能IO優化 中發現一個估算公式:

最佳線程數目 = ((線程等待時間+線程CPU時間)/線程CPU時間 )* CPU數目
      

比如平均每個線程CPU運作時間為0.5s,而線程等待時間(非CPU運作時間,比如IO)為1.5s,CPU核心數為8,那麼根據上面這個公式估算得到:((0.5+1.5)/0.5)*8=32。這個公式進一步轉化為:

最佳線程數目 = (線程等待時間與線程CPU時間之比 + 1)* CPU數目
      

可以得出一個結論:

線程等待時間所占比例越高,需要越多線程。線程CPU時間所占比例越高,需要越少線程。

上一種估算方法也和這個結論相合。

一個系統最快的部分是CPU,是以決定一個系統吞吐量上限的是CPU。增強CPU處理能力,可以提高系統吞吐量上限。但根據短闆效應,真實的系統吞吐量并不能單純根據CPU來計算。那要提高系統吞吐量,就需要從“系統短闆”(比如網絡延遲、IO)着手:

  • 盡量提高短闆操作的并行化比率,比如多線程下載下傳技術
  • 增強短闆能力,比如用NIO替代IO

第一條可以聯系到Amdahl定律,這條定律定義了串行系統并行化後的加速比計算公式:

加速比=優化前系統耗時 / 優化後系統耗時
      

加速比越大,表明系統并行化的優化效果越好。Addahl定律還給出了系統并行度、CPU數目和加速比的關系,加速比為Speedup,系統串行化比率(指串行執行代碼所占比率)為F,CPU數目為N:

Speedup <= 1 / (F + (1-F)/N)
      

當N足夠大時,串行化比率F越小,加速比Speedup越大。

寫到這裡,我突然冒出一個問題。

是否使用線程池就一定比使用單線程高效呢?

答案是否定的,比如Redis就是單線程的,但它卻非常高效,基本操作都能達到十萬量級/s。從線程這個角度來看,部分原因在于:

  • 多線程帶來線程上下文切換開銷,單線程就沒有這種開銷

當然“Redis很快”更本質的原因在于:Redis基本都是記憶體操作,這種情況下單線程可以很高效地利用CPU。而多線程适用場景一般是:存在相當比例的IO和網絡操作。

是以即使有上面的簡單估算方法,也許看似合理,但實際上也未必合理,都需要結合系統真實情況(比如是IO密集型或者是CPU密集型或者是純記憶體操作)和硬體環境(CPU、記憶體、硬碟讀寫速度、網絡狀況等)來不斷嘗試達到一個符合實際的合理估算值。

最後來一個“Dark Magic”估算方法(因為我暫時還沒有搞懂它的原理),使用下面的類:

package pool_size_calculate;

import java.math.BigDecimal;

import java.math.RoundingMode;

import java.util.Timer;

import java.util.TimerTask;

import java.util.concurrent.BlockingQueue;


/**

      
  • A class that calculates the optimal thread pool boundaries. It takes the
  • desired target utilization and the desired work queue memory consumption as
  • input and retuns thread count and work queue capacity.
  • @author Niklas Schlimm

*/

public abstract class PoolSizeCalculator {

/**
 * The sample queue size to calculate the size of a single {@link Runnable}
 * element.
 */
private final int SAMPLE_QUEUE_SIZE = 1000;

/**
 * Accuracy of test run. It must finish within 20ms of the testTime
 * otherwise we retry the test. This could be configurable.
 */
private final int EPSYLON = 20;

/**
 * Control variable for the CPU time investigation.
 */
private volatile boolean expired;

/**
 * Time (millis) of the test run in the CPU time calculation.
 */
private final long testtime = 3000;

/**
 * Calculates the boundaries of a thread pool for a given {@link Runnable}.
 *
 * @param targetUtilization
 *            the desired utilization of the CPUs (0 &lt;= targetUtilization &lt;= 	 *            1) 	 * @param targetQueueSizeBytes 	 *            the desired maximum work queue size of the thread pool (bytes) 	 */ 	protected void calculateBoundaries(BigDecimal targetUtilization, 			BigDecimal targetQueueSizeBytes) { 		calculateOptimalCapacity(targetQueueSizeBytes); 		Runnable task = creatTask(); 		start(task); 		start(task); // warm up phase 		long cputime = getCurrentThreadCPUTime(); 		start(task); // test intervall 		cputime = getCurrentThreadCPUTime() - cputime; 		long waittime = (testtime * 1000000) - cputime; 		calculateOptimalThreadCount(cputime, waittime, targetUtilization); 	} 	private void calculateOptimalCapacity(BigDecimal targetQueueSizeBytes) { 		long mem = calculateMemoryUsage(); 		BigDecimal queueCapacity = targetQueueSizeBytes.divide(new BigDecimal( 				mem), RoundingMode.HALF_UP); 		System.out.println("Target queue memory usage (bytes): " 				+ targetQueueSizeBytes); 		System.out.println("createTask() produced " 				+ creatTask().getClass().getName() + " which took " + mem 				+ " bytes in a queue"); 		System.out.println("Formula: " + targetQueueSizeBytes + " / " + mem); 		System.out.println("* Recommended queue capacity (bytes): " 				+ queueCapacity); 	} 	/** 	 * Brian Goetz' optimal thread count formula, see 'Java Concurrency in 	 * Practice' (chapter 8.2) 	 *  	 * @param cpu 	 *            cpu time consumed by considered task 	 * @param wait 	 *            wait time of considered task 	 * @param targetUtilization 	 *            target utilization of the system 	 */ 	private void calculateOptimalThreadCount(long cpu, long wait, 			BigDecimal targetUtilization) { 		BigDecimal waitTime = new BigDecimal(wait); 		BigDecimal computeTime = new BigDecimal(cpu); 		BigDecimal numberOfCPU = new BigDecimal(Runtime.getRuntime() 				.availableProcessors()); 		BigDecimal optimalthreadcount = numberOfCPU.multiply(targetUtilization) 				.multiply( 						new BigDecimal(1).add(waitTime.divide(computeTime, 								RoundingMode.HALF_UP))); 		System.out.println("Number of CPU: " + numberOfCPU); 		System.out.println("Target utilization: " + targetUtilization); 		System.out.println("Elapsed time (nanos): " + (testtime * 1000000)); 		System.out.println("Compute time (nanos): " + cpu); 		System.out.println("Wait time (nanos): " + wait); 		System.out.println("Formula: " + numberOfCPU + " * " 				+ targetUtilization + " * (1 + " + waitTime + " / " 				+ computeTime + ")"); 		System.out.println("* Optimal thread count: " + optimalthreadcount); 	} 	/** 	 * Runs the {@link Runnable} over a period defined in {@link #testtime}. 	 * Based on Heinz Kabbutz' ideas 	 * (http://www.javaspecialists.eu/archive/Issue124.html). 	 *  	 * @param task 	 *            the runnable under investigation 	 */ 	public void start(Runnable task) { 		long start = 0; 		int runs = 0; 		do { 			if (++runs &gt; 5) {
			throw new IllegalStateException("Test not accurate");
		}
		expired = false;
		start = System.currentTimeMillis();
		Timer timer = new Timer();
		timer.schedule(new TimerTask() {
			public void run() {
				expired = true;
			}
		}, testtime);
		while (!expired) {
			task.run();
		}
		start = System.currentTimeMillis() - start;
		timer.cancel();
	} while (Math.abs(start - testtime) &gt; EPSYLON);
	collectGarbage(3);
}

private void collectGarbage(int times) {
	for (int i = 0; i &lt; times; i++) {
		System.gc();
		try {
			Thread.sleep(10);
		} catch (InterruptedException e) {
			Thread.currentThread().interrupt();
			break;
		}
	}
}

/**
 * Calculates the memory usage of a single element in a work queue. Based on
 * Heinz Kabbutz' ideas
 * (http://www.javaspecialists.eu/archive/Issue029.html).
 *
 * @return memory usage of a single {@link Runnable} element in the thread
 *         pools work queue
 */
public long calculateMemoryUsage() {
	BlockingQueue queue = createWorkQueue();
	for (int i = 0; i &lt; SAMPLE_QUEUE_SIZE; i++) {
		queue.add(creatTask());
	}
	long mem0 = Runtime.getRuntime().totalMemory()
			- Runtime.getRuntime().freeMemory();
	long mem1 = Runtime.getRuntime().totalMemory()
			- Runtime.getRuntime().freeMemory();
	queue = null;
	collectGarbage(15);
	mem0 = Runtime.getRuntime().totalMemory()
			- Runtime.getRuntime().freeMemory();
	queue = createWorkQueue();
	for (int i = 0; i &lt; SAMPLE_QUEUE_SIZE; i++) {
		queue.add(creatTask());
	}
	collectGarbage(15);
	mem1 = Runtime.getRuntime().totalMemory()
			- Runtime.getRuntime().freeMemory();
	return (mem1 - mem0) / SAMPLE_QUEUE_SIZE;
}

/**
 * Create your runnable task here.
 *
 * @return an instance of your runnable task under investigation
 */
protected abstract Runnable creatTask();

/**
 * Return an instance of the queue used in the thread pool.
 *
 * @return queue instance
 */
protected abstract BlockingQueue createWorkQueue();

/**
 * Calculate current cpu time. Various frameworks may be used here,
 * depending on the operating system in use. (e.g.
 * http://www.hyperic.com/products/sigar). The more accurate the CPU time
 * measurement, the more accurate the results for thread count boundaries.
 *
 * @return current cpu time of current thread
 */
protected abstract long getCurrentThreadCPUTime();
           

}

然後自己繼承這個抽象類并實作它的三個抽象方法,比如下面是我寫的一個示例(任務是請求網絡資料),其中我指定期望CPU使用率為1.0(即100%),任務隊列總大小不超過100,000位元組:

package pool_size_calculate;

import java.io.BufferedReader;

import java.io.IOException;

import java.io.InputStreamReader;

import java.lang.management.ManagementFactory;

import java.math.BigDecimal;

import java.net.HttpURLConnection;

import java.net.URL;

import java.util.concurrent.BlockingQueue;

import java.util.concurrent.LinkedBlockingQueue;


public class SimplePoolSizeCaculatorImpl extends PoolSizeCalculator {

       
@Override
protected Runnable creatTask() {
	return new AsyncIOTask();
}

@Override
protected BlockingQueue createWorkQueue() {
	return new LinkedBlockingQueue(1000);
}

@Override
protected long getCurrentThreadCPUTime() {
	return ManagementFactory.getThreadMXBean().getCurrentThreadCpuTime();
}

public static void main(String[] args) {
	PoolSizeCalculator poolSizeCalculator = new SimplePoolSizeCaculatorImpl();
	poolSizeCalculator.calculateBoundaries(new BigDecimal(1.0), new BigDecimal(100000));
}
           
} /**
  • 自定義的異步IO任務
  • @author Will

class AsyncIOTask implements Runnable {

@Override
public void run() {
	HttpURLConnection connection = null;
	BufferedReader reader = null;
	try {
		String getURL = "http://baidu.com";
		URL getUrl = new URL(getURL);

		connection = (HttpURLConnection) getUrl.openConnection();
		connection.connect();
		reader = new BufferedReader(new InputStreamReader(
				connection.getInputStream()));

		String line;
		while ((line = reader.readLine()) != null) {
			// empty loop
		}
	}

	catch (IOException e) {

	} finally {
		if(reader != null) {
			try {
				reader.close();
			}
			catch(Exception e) {

			}
		}
		connection.disconnect();
	}

}
           

得到的輸出如下:

Target queue memory usage (bytes): 100000
createTask() produced pool_size_calculate.AsyncIOTask which took 40 bytes in a queue
Formula: 100000 / 40
* Recommended queue capacity (bytes): 2500
Number of CPU: 4
Target utilization: 1
Elapsed time (nanos): 3000000000
Compute time (nanos): 47181000
Wait time (nanos): 2952819000
Formula: 4 * 1 * (1 + 2952819000 / 47181000)
* Optimal thread count: 256
      

推薦的任務隊列大小為2500,線程數為256,有點出乎意料之外。我可以如下構造一個線程池:

ThreadPoolExecutor pool =
 new ThreadPoolExecutor(256, 256, 0L, TimeUnit.MILLISECONDS, new LinkedBlockingQueue(2500));
      

原創文章,轉載請注明: 轉載自并發程式設計網 – ifeve.com本文連結位址: 如何合理地估算線程池大小?

如何合理地估算線程池大小?
如何合理地估算線程池大小?
如何合理地估算線程池大小?

添加本文到我的收藏

Related posts:

  1. 并發工具類(一)等待多線程完成的CountDownLatch
  2. 并發工具類(二)同步屏障CyclicBarrier
  3. 線程池
  4. 跟着執行個體學習ZooKeeper的用法: 隊列
  5. Java鎖的種類以及辨析(四):可重入鎖
  6. Bug:LinkedTransferQueue的資料暫失和CPU爆滿以及修複
  7. 《 Java并發程式設計從入門到精通》 Java線程池的監控
  8. 如何建立并運作java線程
  9. AKKA文檔(Java版)—建立有限狀态機角色
  10. LockSupport 源碼閱讀
  11. 并發集合(四)用優先級對使用阻塞線程安全的清單排序
  12. JIT與可見性
  13. 《Java并發性和多線程介紹》-Java TheadLocal
  14. 并發集合(五)使用線程安全的、帶有延遲元素的清單
  15. 定制并發類(八)自定義在 Fork/Join 架構中運作的任務

原文位址:http://ifeve.com/how-to-calculate-threadpool-size/

繼續閱讀