。。。
和Kruskal生成樹一樣
本來是u,v連一條f的邊
現在變成建立一個點,點權為f,u v都像它連無邊權的邊
(實際上應該是u的根和v的根)
這樣樹有一些性質:
1.二叉樹
2.原樹與新樹兩點間路徑上邊權(點權)的最大(最小)值相等
3.子節點的邊權(大于等于)小于等于父親節點
4.原樹中兩點之間路徑上邊權的最大(最小)值等于新樹上兩點的LCA的點權
# include <iostream>
# include <stdio.h>
# include <stdlib.h>
# include <algorithm>
# include <string.h>
# define IL inline
# define ll long long
# define Fill(a, b) memset(a, b, sizeof(a));
using namespace std;
IL ll Read(){
char c = '%'; ll x = , z = ;
for(; c < '0' || c > '9'; c = getchar()) z = c == '-' ? - : ;
for(; c >= '0' && c <= '9'; c = getchar()) x = x * + c - '0';
return x * z;
}
const int MAXN = , MAXM = ;
int ft[MAXN], n, m, cnt, fa[MAXN][], w[MAXN], deep[MAXN], Fa[MAXN], num;
struct Edge{
int to, nt;
} edge[MAXM];
struct Kruskal{
int u, v, f;
IL bool operator <(Kruskal b) const{
return f > b.f;
}
} road[MAXM];
IL int Find(int x){
return Fa[x] == x ? x : Fa[x] = Find(Fa[x]);
}
IL void Add(int u, int v){
edge[cnt] = (Edge){v, ft[u]}; ft[u] = cnt++;
edge[cnt] = (Edge){u, ft[v]}; ft[v] = cnt++;
}
IL void Dfs(int u){
for(int e = ft[u]; e != -; e = edge[e].nt){
int v = edge[e].to;
if(!deep[v]){
deep[v] = deep[u] + ;
fa[v][] = u;
Dfs(v);
}
}
}
IL int LCA(int u, int v){
if(Find(u) != Find(v)) return -;
if(deep[u] < deep[v]) swap(u, v);
for(int i = ; i >= ; i--)
if(deep[fa[u][i]] >= deep[v]) u = fa[u][i];
if(u == v) return w[u];
for(int i = ; i >= ; i--)
if(fa[u][i] != fa[v][i]) u = fa[u][i], v = fa[v][i];
return w[fa[u][]];
}
int main(){
Fill(ft, -);
num = n = Read(); m = Read();
for(int i = ; i <= * n; i++)
Fa[i] = i;
for(int i = ; i <= m; i++)
road[i] = (Kruskal){Read(), Read(), Read()};
sort(road + , road + m + );
for(int i = , tot = ; i <= m && tot < n; i++){
int u = Find(road[i].u), v = Find(road[i].v);
if(u != v){
tot++;
w[++num] = road[i].f;
Fa[u] = Fa[v] = num;
Add(u, num); Add(v, num);
}
}
for(int i = num; i; i--)
if(!deep[i]) deep[i] = , Dfs(i);
for(int i = ; i <= ; i++)
for(int j = ; j <= num; j++)
fa[j][i] = fa[fa[j][i - ]][i - ];
int Q = Read();
while(Q--){
int u = Read(), v = Read();
printf("%d\n", LCA(u, v));
}
return ;
}