天天看點

Correlation coefficients and appliction in fMRI Data背景知識fMRI資料功能連接配接局部一緻性(Regional Homogeneity)(此章節有誤)

相關系數及其在fMRI資料中的應用

  • 背景知識
    • 皮爾遜相關系數(Pearson correlation coefficient)
    • 肯德爾和諧系數(Kendall's W)
  • fMRI資料
  • 功能連接配接
  • 局部一緻性(Regional Homogeneity)(此章節有誤)

背景知識

皮爾遜相關系數(Pearson correlation coefficient)

ρ i j = ρ ( X i , X j ) = c o v ( X i , X j ) D ( X i ) D ( X j ) \begin{aligned} \rho_{ij} &= \rho \left( \mathbf{X}_i, \mathbf{X}_j \right) \\ &= \frac{cov \left( \mathbf{X}_i, \mathbf{X}_j \right)} {\sqrt{D(\mathbf{X}_i)} \sqrt{D(\mathbf{X}_j)}} \\ \end{aligned} ρij​​=ρ(Xi​,Xj​)=D(Xi​)

​D(Xj​)

​cov(Xi​,Xj​)​​

肯德爾和諧系數(Kendall’s W)

Kendall’s W解決的原始問題是在不同人對多個事物進行評分時, 如何對這些人評分結果的一緻性進行評價.

假設存在 n n n件物體, 并由 m m m個不同的人進行評分或排序, 且第 j j j個人對第 i i i件物體的評分為 r i j r_{ij} rij​(在該問題中, 每個評分實際表示的是排序, 為1到n之間的整數且不重複), 則這些評分可表示為

R = { r i j } n × m \mathbf{R}=\{ r_{ij} \}_{n \times m} R={rij​}n×m​

物體 i i i的總分為

R i = ∑ j = 1 m r i j R_i=\sum_{j=1}^m r_{ij} Ri​=j=1∑m​rij​

所有物體的平均得分為

R ˉ = 1 n ∑ i = 1 n R i = 1 n ∑ i = 1 n ∑ j = 1 m r i j = 1 n ∑ j = 1 m n ( n + 1 ) 2 = m ( n + 1 ) 2 \begin{aligned} \bar{R} &=\frac{1}{n} \sum_{i=1}^n R_i \\ &= \frac{1}{n} \sum_{i=1}^n \sum_{j=1}^m r_{ij} \\ &= \frac{1}{n} \sum_{j=1}^m \frac{n(n+1)}{2} \\ &= \frac{m(n+1)}{2} \end{aligned} Rˉ​=n1​i=1∑n​Ri​=n1​i=1∑n​j=1∑m​rij​=n1​j=1∑m​2n(n+1)​=2m(n+1)​​

所有物體得分的方差之和為 S = ∑ i = 1 n ( R i − R ˉ ) 2 S=\sum_{i=1}^n \left( R_i -\bar{R} \right)^2 S=∑i=1n​(Ri​−Rˉ)2, 則Kendall’s W定義為

W = 12 S m 2 ( n 3 − n ) W=\frac{12S}{m^2 (n^3-n)} W=m2(n3−n)12S​

其中 m 2 ( n 3 − n ) 12 \frac{m^2 (n^3-n)}{12} 12m2(n3−n)​表示 S S S可能出現的最大值, 當且僅當所有人對同一個物體的評分一緻時(即評分一緻)得到, 而最小值則在 R i = R ˉ R_i = \bar{R} Ri​=Rˉ時得到.

max ⁡ S = ∑ i = 1 n ( m i − R ˉ ) 2 = ∑ i = 1 n [ m 2 i 2 − m 2 i ( n + 1 ) + m 2 ( n + 1 ) 2 4 ] = m 2 n ( n + 1 ) ⋅ 2 n + 1 6 − m 2 n ( n + 1 ) ⋅ n + 1 4 = m 2 n ( n + 1 ) ⋅ n − 1 12 = m 2 ( n 3 − n ) 12 \begin{aligned} \max{S} &= \sum_{i=1}^n \left( mi-\bar{R} \right)^2 \\ &= \sum_{i=1}^n \left[ m^2 i^2 - m^2 i (n+1) + \frac{m^2 (n+1)^2}{4} \right] \\ &= m^2 n (n+1) \cdot \frac{2n+1}{6} - m^2 n (n+1) \cdot \frac{n+1}{4} \\ &= m^2 n (n+1) \cdot \frac{n-1}{12} \\ &= \frac{m^2(n^3-n)}{12} \end{aligned} maxS​=i=1∑n​(mi−Rˉ)2=i=1∑n​[m2i2−m2i(n+1)+4m2(n+1)2​]=m2n(n+1)⋅62n+1​−m2n(n+1)⋅4n+1​=m2n(n+1)⋅12n−1​=12m2(n3−n)​​

使得 W W W的範圍縮小至 [ 0 , 1 ] \left[0, 1\right] [0,1].

fMRI資料

功能磁共振成像資料的基本元素為體素的時間序列 X i = [ x i 1 , x i 2 , ⋯   , x i T ] T \mathbf{X}_i=\left[x_{i1}, x_{i2}, \cdots, x_{iT} \right]^T Xi​=[xi1​,xi2​,⋯,xiT​]T, 則一個被試的全腦資料可表示為

X = [ X 1 , X 2 , ⋯   , X R ] T = [ x 11 x 12 ⋯ x 1 T x 21 x 22 ⋯ x 2 T ⋮ ⋮ ⋱ ⋮ x R 1 x R 2 ⋯ x R T ] R × T \begin{aligned} \mathbf{X} &=\left[\mathbf{X}_1, \mathbf{X}_2, \cdots, \mathbf{X}_{R} \right]^T \\ &= \left[ \begin{matrix} x_{11} & x_{12} & \cdots & x_{1T} \\ x_{21} & x_{22} & \cdots & x_{2T} \\ \vdots & \vdots & \ddots & \vdots \\ x_{R1} & x_{R2} & \cdots & x_{RT} \end{matrix} \right]_{R \times T} \end{aligned} X​=[X1​,X2​,⋯,XR​]T=⎣⎢⎢⎢⎡​x11​x21​⋮xR1​​x12​x22​⋮xR2​​⋯⋯⋱⋯​x1T​x2T​⋮xRT​​⎦⎥⎥⎥⎤​R×T​​

其中 R = W × H × D R=W \times H \times D R=W×H×D表示體素的數量, W , H , D W, H, D W,H,D分别表示腦影像資料在三個次元上的大小, T T T表示時間序列的長度, X r ∈ R T \mathbf{X}_r \in \mathbb{R}^T Xr​∈RT表示第 R R R個體素的時間序列.

根據AAL(Anatominal Atlas Label)模版, 全腦可分為116個腦區, 即将所有體素劃分至116個集合中

R O I i = { j 1 , j 2 , ⋯   , j R i } i = 1 , 2 , ⋯   , 116 ROI_i=\{ j_1, j_2, \cdots, j_{R_i} \} \quad i=1,2,\cdots,116 ROIi​={j1​,j2​,⋯,jRi​​}i=1,2,⋯,116

其中, R i R_i Ri​表示第i個腦區包含的體素數量.

功能連接配接

功能連接配接的計算步驟如下

  1. 計算各腦區的平均時間序列

    X ˉ i = 1 R i ∑ j ∈ R O I i X j \mathbf{\bar{X}}_i = \frac{1}{R_i} \sum_{j \in ROI_i} \mathbf{X}_j Xˉi​=Ri​1​j∈ROIi​∑​Xj​

  2. 計算兩個腦區之間的Pearson相關系數

    ρ i j = ρ ( X ˉ i , X ˉ j ) = c o v ( X ˉ i , X ˉ j ) D ( X ˉ i ) D ( X ˉ j ) \begin{aligned} \rho_{ij} &= \rho \left( \bar{\mathbf{X}}_i, \bar{\mathbf{X}}_j \right) \\ &= \frac{cov \left( \bar{\mathbf{X}}_i, \bar{\mathbf{X}}_j \right)} {\sqrt{D(\bar{\mathbf{X}}_i)} \sqrt{D(\bar{\mathbf{X}}_j)}} \\ \end{aligned} ρij​​=ρ(Xˉi​,Xˉj​)=D(Xˉi​)

    ​D(Xˉj​)

    ​cov(Xˉi​,Xˉj​)​​

由于 ρ ( X ˉ i , X ˉ j ) = ρ ( α ^ i X i , α ^ j X j ) \rho \left( \bar{\mathbf{X}}_i, \bar{\mathbf{X}}_j \right)= \rho \left(\boldsymbol{\hat{\alpha}}_i \mathbf{X}_i, \boldsymbol{\hat{\alpha}}_j \mathbf{X}_j \right) ρ(Xˉi​,Xˉj​)=ρ(α^i​Xi​,α^j​Xj​), 其中 α ^ i \boldsymbol{\hat{\alpha}}_i α^i​為長度為 R i R_i Ri​, 所有元素為 1 R i \frac{1}{R_i} Ri​1​的向量. 是以有

ρ i j = ρ ( X ˉ i , X ˉ j ) = ρ ( α i X i , α j X j ) = α ^ i T Σ X i X j α ^ j α ^ i T Σ X i X i α ^ i α ^ j T Σ X j X j α ^ j = α i T Σ X i X j α j α i T Σ X i X i α i α j T Σ X j X j α j \begin{aligned} \rho_{ij} &= \rho \left( \bar{\mathbf{X}}_i, \bar{\mathbf{X}}_j \right) \\ &= \rho \left( \boldsymbol{\alpha}_i \mathbf{X}_i, \boldsymbol{\alpha}_j \mathbf{X}_j \right) \\ &= \frac{\boldsymbol{\hat{\alpha}}_i^T \Sigma_{\mathbf{X}_i \mathbf{X}_j} \boldsymbol{\hat{\alpha}}_j} {\sqrt{\boldsymbol{\hat{\alpha}}_i^T \Sigma_{\mathbf{X}_i \mathbf{X}_i} \boldsymbol{\hat{\alpha}}_i} \sqrt{\boldsymbol{\hat{\alpha}}_j^T \Sigma_{\mathbf{X}_j \mathbf{X}_j} \boldsymbol{\hat{\alpha}}_j}} \\ &= \frac{\boldsymbol{\alpha}_i^T \Sigma_{\mathbf{X}_i \mathbf{X}_j} \boldsymbol{\alpha}_j} {\sqrt{\boldsymbol{\alpha}_i^T \Sigma_{\mathbf{X}_i \mathbf{X}_i} \boldsymbol{\alpha}_i} \sqrt{\boldsymbol{\alpha}_j^T \Sigma_{\mathbf{X}_j \mathbf{X}_j} \boldsymbol{\alpha}_j}} \\ \end{aligned} ρij​​=ρ(Xˉi​,Xˉj​)=ρ(αi​Xi​,αj​Xj​)=α^iT​ΣXi​Xi​​α^i​

​α^jT​ΣXj​Xj​​α^j​

​α^iT​ΣXi​Xj​​α^j​​=αiT​ΣXi​Xi​​αi​

​αjT​ΣXj​Xj​​αj​

​αiT​ΣXi​Xj​​αj​​​

其中 Σ X i X j \Sigma_{\mathbf{X}_i \mathbf{X}_j} ΣXi​Xj​​表示随機向量 X i \mathbf{X}_i Xi​與 X j \mathbf{X}_j Xj​的協方差矩陣, α i \boldsymbol{\alpha}_i αi​與 α j \boldsymbol{\alpha}_j αj​分别表示所有元素為1, 長度為 R i , R j R_i, R_j Ri​,Rj​的向量.

局部一緻性(Regional Homogeneity)(此章節有誤)

局部一緻性的計算過程如下

  1. 選取中心體素 X i = [ x i 1 , x i 2 , ⋯   , x i T ] T \mathbf{X}_i=[x_{i1}, x_{i2}, \cdots, x_{iT}]^T Xi​=[xi1​,xi2​,⋯,xiT​]T
  2. 以體素 X i \mathbf{X}_i Xi​為中心選取周圍的體素(在DPARSF standard processing pipeline中, 為相鄰的 K = 27 K=27 K=27個體素)

    X ~ i = [ X i 1 , X i 2 , ⋯   , X i K ] T = [ x i 1 1 x i 1 2 ⋯ x i 1 T x i 2 1 x i 2 2 ⋯ x i 1 T ⋮ ⋮ ⋱ ⋮ x i K 1 x i K 2 ⋯ x i K T ] \begin{aligned} \widetilde{\mathbf{X}}_i &=\left[ \mathbf{X}_{i_1}, \mathbf{X}_{i_2}, \cdots, \mathbf{X}_{i_{K}} \right]^T \\ &= \left[ \begin{matrix} x_{i_1 1} & x_{i_1 2} & \cdots & x_{i_1 T} \\ x_{i_2 1} & x_{i_2 2} & \cdots & x_{i_1 T} \\ \vdots & \vdots & \ddots & \vdots \\ x_{i_{K} 1} & x_{i_{K} 2} & \cdots & x_{i_{K} T} \end{matrix} \right] \end{aligned} X

    i​​=[Xi1​​,Xi2​​,⋯,XiK​​]T=⎣⎢⎢⎢⎡​xi1​1​xi2​1​⋮xiK​1​​xi1​2​xi2​2​⋮xiK​2​​⋯⋯⋱⋯​xi1​T​xi1​T​⋮xiK​T​​⎦⎥⎥⎥⎤​​

  3. 根據Kendall’s W的計算, 得到該體素的局部一緻性

    (1) 計算所有時間點的和

    X ~ i t S = ∑ j = 1 K x i j t t = 1 , 2 , ⋯   , T \widetilde{\mathbf{X}}_{it}^S=\sum_{j=1}^{K} x_{i_j t} \quad t=1,2, \cdots, T X

    itS​=j=1∑K​xij​t​t=1,2,⋯,T

    也可以表示成為矩陣與向量的形式

    X ~ i S = ∑ j = 1 K X i j = α X ~ i \begin{aligned} \widetilde{\mathbf{X}}_i^S &= \sum_{j=1}^{K} \mathbf{X}_{i_j} \\ &= \boldsymbol{\alpha} \widetilde{\mathbf{X}}_i \end{aligned} X

    iS​​=j=1∑K​Xij​​=αX

    i​​

    其中 α = [ 1 , 1 , ⋯   , 1 ] \boldsymbol{\alpha}=[1, 1, \cdots, 1] α=[1,1,⋯,1]是維數為 1 × 27 1 \times 27 1×27的向量.

    (2) 計算所有體素的平均值

    X ˉ i = 1 T ∑ j = 1 K ∑ t = 1 T x i j t = 1 T ∑ t = 1 T X ~ i t S \begin{aligned} \bar{\mathbf{X}}_i &= \frac{1}{T} \sum_{j=1}^{K} \sum_{t=1}^T x_{i_j t} \\ &= \frac{1}{T} \sum_{t=1}^T \widetilde{\mathbf{X}}_{it}^S \end{aligned} Xˉi​​=T1​j=1∑K​t=1∑T​xij​t​=T1​t=1∑T​X

    itS​​

    (3) 計算Kendall’s W

    W i = 12 S i K 2 ( T 3 − T ) W_i = \frac{12S_i}{K^2 (T^3 - T)} Wi​=K2(T3−T)12Si​​

    其中 S S S表示所有時間序列和的方差

    S i = D ( X ~ i S ) = D ( α X ~ i ) = ∑ j = 1 K D ( X i j ) = α T Σ X ~ i X ~ i α \begin{aligned} S_i &= D(\widetilde{\mathbf{X}}_i^S ) = D(\boldsymbol{\alpha} \widetilde{\mathbf{X}}_i) \\ &= \sum_{j=1}^K D(\mathbf{X}_{i_j}) \\ &= \boldsymbol{\alpha}^T \Sigma_{\widetilde{\mathbf{X}}_i \widetilde{\mathbf{X}}_i} \boldsymbol{\alpha} \end{aligned} Si​​=D(X

    iS​)=D(αX

    i​)=j=1∑K​D(Xij​​)=αTΣX

    i​X

    i​​α​

    是以

    W i = 12 K 2 ( T 3 − T ) S i = 12 K 2 ( T 3 − T ) ∑ j = 1 K D ( X i j ) = 12 K 2 ( T 3 − T ) α T Σ X ~ i X ~ i α \begin{aligned} W_i &= \frac{12}{K^2(T^3-T)} S_i \\ &= \frac{12}{K^2(T^3-T)} \sum_{j=1}^K D(\mathbf{X}_{i_j}) \\ &= \frac{12}{K^2(T^3-T)} \boldsymbol{\alpha}^T \Sigma_{\widetilde{\mathbf{X}}_i \widetilde{\mathbf{X}}_i} \boldsymbol{\alpha} \end{aligned} Wi​​=K2(T3−T)12​Si​=K2(T3−T)12​j=1∑K​D(Xij​​)=K2(T3−T)12​αTΣX

    i​X

    i​​α​