import pandas as pd
from sklearn.model_selection import train_test_split
from xgboost.sklearn import XGBClassifier
from sklearn.metrics import classification_report
from sklearn.metrics import f1_score, precision_score, recall_score
from sklearn.externals import joblib # 将模型導出所需包
def get_cust_age_stage(birth_year):
"""根據出生年份擷取年齡段"""
age_stage = []
for i in range(len(birth_year)):
if int(birth_year[i]) == 0:
age_stage.append("未知")
elif int(birth_year[i]) < 1960:
age_stage.append("60前")
elif int(birth_year[i]) < 1970:
age_stage.append("60後")
elif int(birth_year[i]) < 1980:
age_stage.append("70後")
elif int(birth_year[i]) < 1990:
age_stage.append("80後")
elif int(birth_year[i]) < 2000:
age_stage.append("90後")
elif int(birth_year[i]) >= 2000:
age_stage.append("00後")
else:
age_stage.append("未知")
return age_stage
def get_top5_onehot(data):
"""對c字段排名top5的進行one hot"""
# 擷取top5的值
c_top5_counts = data['c'].value_counts()[:5]
c_top5_names = list(c_top5_counts.keys())
# 進行one-hot編碼,隻保留top5的列
c_one_hot = pd.get_dummies(data['c'])
c_top5 = c_one_hot[c_top5_names]
# 将top5的列合并到data中
data = data.join(c_top5)
return data
def get_quantile_20_values(input_data):
"""按照分位數切分為20等分"""
grade = pd.DataFrame(columns=['quantile', 'value'])
for i in range(0, 21):
grade.loc[i, 'quantile'] = i / 20.0
grade.loc[i, 'value'] = input_data.quantile(i / 20.0)
cut_point = grade['value'].tolist() # 20等分的分位數的值
# 對20等分的分位數的值 進行去重
s_unique = []
for i in range(len(cut_point)):
if cut_point[i] not in s_unique:
s_unique.append(cut_point[i])
return s_unique
def get_quantile_interregional(s_unique):
"""根據去重後的分位數,構造區間"""
interregional = []
for i in range(1, len(s_unique)):
interregional.append([i, s_unique[i - 1], s_unique[i]])
if i == len(s_unique) - 1 and len(interregional) < 20:
interregional.append([i + 1, s_unique[i], s_unique[i]])
return interregional
def get_current_level(item_data,interregional):
"""根據分位數區間擷取目前數所對應的的級别"""
level = 0
for i in range(len(interregional)):
if item_data >= interregional[i][1] and item_data
level = interregional[i][0]
break
elif interregional[i][1] == interregional[i][2]:
level = interregional[i][0]
break
return level
def get_division_level(input_data):
"""根據分位數劃分對應級别"""
# 擷取去重後20等分的分位數的值
s_unique = get_quantile_20_values(input_data)
# 構造分位數區間,輸出格式[index,下限,上限] 區間為左閉右開
interregional = get_quantile_interregional(s_unique)
# 根據分位數區間對資料劃分不同等級
quantile_20_level = []
for item in input_data:
quantile_20_level.append(get_current_level(item, interregional))
return quantile_20_level
def pre_processing(data):
"""對資料進行預處理"""
# 1. 增加衍生變量
# 年齡
data['年齡'] = get_cust_age_stage(data['出生年份'])
# 本月平均時長
data['本月平均時長'] = data['本月時長'].div(data['本月次數'],axis=0)
data['g'] = data['a'] - data['b']
# 2. 填充資料
col_name_0 = ['a', 'b','g', 'k'] # 需要填充為數字0的名額名
values = {}
for i in col_name_0:
values[i] = 0
# 不加inplace=True,資料不會被填充
data.fillna(value=values, inplace=True)
data.fillna({'m':'未知', 'z':'未知'}, inplace=True) # m/z列需要填充為字元串
# 對c名額進行one-hot處理
data = get_top5_onehot(data)
# 3. 分級化
col_name_level = ['d', 'e', 'f']
for i in range(len(col_name_level)):
new_col_name = col_name_level[i] + "_TILE20"
data[new_col_name] = get_division_level(data[col_name_level[i]])
return data
def get_model_columns(input_data):
"""擷取模組化名額列名,清單類型"""
total_col_names = input_data.columns
del_col_names = ['a','b','c']
model_col_names = [i for i in total_col_names if i not in del_col_names]
return model_col_names
def importance_features_top(model_str, model, x_train):
"""列印模型的重要名額,排名top10名額"""
print("列印XGBoost重要名額")
feature_importances_ = model.feature_importances_
feature_names = x_train.columns
importance_col = pd.DataFrame([*zip(feature_names, feature_importances_)],
columns=['a', 'b'])
importance_col_desc = importance_col.sort_values(by='b', ascending=False)
print(importance_col_desc.iloc[:10, :])
def print_precison_recall_f1(y_true, y_pre):
"""列印精準率、召回率和F1值"""
print("列印精準率、召回率和F1值")
print(classification_report(y_true, y_pre))
f1 = round(f1_score(y_true, y_pre, average='macro'), 2)
p = round(precision_score(y_true, y_pre, average='macro'), 2)
r = round(recall_score(y_true, y_pre, average='macro'), 2)
print("Precision: {}, Recall: {}, F1: {} ".format(p, r, f1))
def xgboost_model(x_train,y_train):
"""用XGBoost進行模組化,傳回訓練好的模型"""
xgboost_clf = XGBClassifier(min_child_weight=6,max_depth=15,
objective='multi:softmax',num_class=5)
print("-" * 60)
print("xgboost模型:", xgboost_clf)
xgboost_clf.fit(x_train, y_train)
# # 列印重要性指數
importance_features_top('xgboost', xgboost_clf, x_train)
# 儲存模型
joblib.dump(xgboost_clf, './model/XGBoost_model_v1.0')
return xgboost_clf
filename = "./檔案對應路徑.xlsx"
data = pd.read_excel(filename)
# 資料預處理,包括填充資料,增加衍生變量、分級化、top打橫
data_processed = pre_processing(data)
# 根據業務删除某些變量,擷取模組化所需名額
model_col_names = get_model_columns(input_data)
model_data = data_processed[model_col_names]
# 将資料拆分為輸入資料和輸出資料
data_y = model_data['label']
data_x = model_data.drop(['label'], axis=1)
# 資料集拆分為訓練集和測試集兩部分 使用随機數種子,確定可以複現
x_train, x_test, y_train, y_test = train_test_split(data_x,data_y,
test_size=0.3,random_state=1)
# 模組化
xgboost_clf = xgboost_model(x_train, y_train)
# 預測
pre_y_test = xgboost_clf.predict(x_test)
# 列印測試集的結果資訊,包含precision、recall、f1-socre
print("-" * 30, "測試集", "-" * 30)
print_precison_recall_f1(y_test, pre_y_test)