天天看點

PyTorch實作Inception Module一、Inception網絡簡介二、Inception Module三、使用該Inception Module實作MNIST

Inception Module實作

  • 一、Inception網絡簡介
  • 二、Inception Module
  • 三、使用該Inception Module實作MNIST

一、Inception網絡簡介

Inception 又叫GoogleNet,一般來說CNN模型提升網絡性能的方法是增加深度(層數)或寬度(層的通道數),但這樣進行網絡設計一般會帶來巨量的計算開銷。GoogleNet借鑒了諸多前人的觀點與經驗(尤其是Network in Network中使用1x1 conv及AvgPool的idea),如果每個Inception module裡的計算都由各自的1x1 conv來隔離,就不會像傳統CNN深度模型那樣随着深度增加其計算量也指數級增加,如下圖所示,通過加入1x1 conv,計算量得到了明顯的減少。

PyTorch實作Inception Module一、Inception網絡簡介二、Inception Module三、使用該Inception Module實作MNIST

二、Inception Module

PyTorch實作Inception Module一、Inception網絡簡介二、Inception Module三、使用該Inception Module實作MNIST

對上圖所示Inception Module 進行實作

代碼如下:

class InceptionA(torch.nn.Module):
    def __init__(self, in_channels):
        super(InceptionA, self).__init__()
        self.branch1x1 = torch.nn.Conv2d(in_channels, 16, kernel_size=(1, 1))

        self.branch5x5_1 = torch.nn.Conv2d(in_channels, 16, kernel_size=(1, 1))
        # 因為kernel_size=(5, 5),為了保證圖像寬高不改變,将padding設定為2,5/2=2
        self.branch5x5_2 = torch.nn.Conv2d(16, 24, kernel_size=(5, 5), padding=(2, 2))

        self.branch3x3_1 = torch.nn.Conv2d(in_channels, 16, kernel_size=(1, 1))
        # 因為kernel_size=(3, 3),為了保證圖像寬高不改變,将padding設定為1,3/2=1
        self.branch3x3_2 = torch.nn.Conv2d(16, 24, kernel_size=(3, 3), padding=(1, 1))
        # 因為kernel_size=(3, 3),為了保證圖像寬高不改變,将padding設定為1,3/2=1
        self.branch3x3_3 = torch.nn.Conv2d(24, 24, kernel_size=(3, 3), padding=(1, 1))

        self.branch_pool = torch.nn.Conv2d(in_channels, 24, kernel_size=(1, 1))

    def forward(self, x):
        branch1x1 = self.branch1x1(x)

        branch5x5 = self.branch5x5_1(x)
        branch5x5 = self.branch5x5_2(branch5x5)

        branch3x3 = self.branch3x3_1(x)
        branch3x3 = self.branch3x3_2(branch3x3)
        branch3x3 = self.branch3x3_3(branch3x3)

        # 因為kernel_size=(3, 3),為了保證圖像寬高不改變,将padding設定為1,3/2=1
        branch_pool = F.avg_pool2d(x, kernel_size=3, stride=1, padding=1)
        branch_pool = self.branch_pool(branch_pool)

        outputs = [branch1x1, branch5x5, branch3x3, branch_pool]
        # (B, C, W, H),是以設定dim=1,即通過通道相連接配接起來
        return torch.cat(outputs, dim=1)


class Net(torch.nn.Module):
    def __init__(self):
        super(Net, self).__init__()
        self.conv1 = torch.nn.Conv2d(1, 10, kernel_size=(5, 5))
        self.conv2 = torch.nn.Conv2d(88, 20, kernel_size=(5, 5))  # 16+24*3=88

        self.incep1 = InceptionA(in_channels=10)
        self.incep2 = InceptionA(in_channels=20)

        self.mp = torch.nn.MaxPool2d(2)
        self.fc = torch.nn.Linear(1408, 10)

    def forward(self, x):
        in_size = x.size(0)
        x = F.relu(self.mp(self.conv1(x)))  # 輸入通道為1,輸出通道為10
        x = self.incep1(x)  # 輸入通道為10,輸出通道為88
        x = F.relu(self.mp(self.conv2(x)))  # 輸入通道為88,輸出通道為20
        x = self.incep2(x)  # 輸入通道為20,輸出通道為88
        x = x.view(in_size, -1)
        x = self.fc(x)
        return x


model = Net()
           

三、使用該Inception Module實作MNIST

分為四個步驟:

1.Prepare dataset

2.Design model using Class

3.Using PyTorch API to Construct loss and optimizer

4.Training Cycle(forward,backward,update)

完整代碼如下:

# Implementation of Inception Module

import torch
from torchvision import transforms
from torchvision import datasets
from torch.utils.data import DataLoader
import torch.nn.functional as F
import torch.optim as optim

# -----------------------------------------------1.Prepare dataset------------------------------------------------------
batch_size = 64
# transforms.ToTensor():Covert the PIL Image to Tensor
#  transforms.Normalize:The PARAMETERS are mean and std respectively,It use formulation x=(x-mean)/std
transform = transforms.Compose([transforms.ToTensor(),
                                transforms.Normalize((0.1307,), (0.3081,))])

train_dataset = datasets.MNIST(root='./dataset/mnist/',
                               train=True,
                               download=True,
                               transform=transform)
train_loader = DataLoader(train_dataset,
                          shuffle=True,
                          batch_size=batch_size)

test_dataset = datasets.MNIST(root='./dataset/mnist/',
                              train=False,
                              download=True,
                              transform=transform)
test_loader = DataLoader(test_dataset,
                         shuffle=False,
                         batch_size=batch_size)


# ----------------------------------------------------------------------------------------------------------------------


# -----------------------------------------2.Design model using Class---------------------------------------------------

class InceptionA(torch.nn.Module):
    def __init__(self, in_channels):
        super(InceptionA, self).__init__()
        self.branch1x1 = torch.nn.Conv2d(in_channels, 16, kernel_size=(1, 1))

        self.branch5x5_1 = torch.nn.Conv2d(in_channels, 16, kernel_size=(1, 1))
        # 因為kernel_size=(5, 5),為了保證圖像寬高不改變,将padding設定為2,5/2=2
        self.branch5x5_2 = torch.nn.Conv2d(16, 24, kernel_size=(5, 5), padding=(2, 2))

        self.branch3x3_1 = torch.nn.Conv2d(in_channels, 16, kernel_size=(1, 1))
        # 因為kernel_size=(3, 3),為了保證圖像寬高不改變,将padding設定為1,3/2=1
        self.branch3x3_2 = torch.nn.Conv2d(16, 24, kernel_size=(3, 3), padding=(1, 1))
        # 因為kernel_size=(3, 3),為了保證圖像寬高不改變,将padding設定為1,3/2=1
        self.branch3x3_3 = torch.nn.Conv2d(24, 24, kernel_size=(3, 3), padding=(1, 1))

        self.branch_pool = torch.nn.Conv2d(in_channels, 24, kernel_size=(1, 1))

    def forward(self, x):
        branch1x1 = self.branch1x1(x)

        branch5x5 = self.branch5x5_1(x)
        branch5x5 = self.branch5x5_2(branch5x5)

        branch3x3 = self.branch3x3_1(x)
        branch3x3 = self.branch3x3_2(branch3x3)
        branch3x3 = self.branch3x3_3(branch3x3)

        # 因為kernel_size=(3, 3),為了保證圖像寬高不改變,将padding設定為1,3/2=1
        branch_pool = F.avg_pool2d(x, kernel_size=3, stride=1, padding=1)
        branch_pool = self.branch_pool(branch_pool)

        outputs = [branch1x1, branch5x5, branch3x3, branch_pool]
        # (B, C, W, H),是以設定dim=1,即通過通道相連接配接起來
        return torch.cat(outputs, dim=1)


class Net(torch.nn.Module):
    def __init__(self):
        super(Net, self).__init__()
        self.conv1 = torch.nn.Conv2d(1, 10, kernel_size=(5, 5))
        self.conv2 = torch.nn.Conv2d(88, 20, kernel_size=(5, 5))  # 16+24*3=88

        self.incep1 = InceptionA(in_channels=10)
        self.incep2 = InceptionA(in_channels=20)

        self.mp = torch.nn.MaxPool2d(2)
        self.fc = torch.nn.Linear(1408, 10)

    def forward(self, x):
        in_size = x.size(0)
        x = F.relu(self.mp(self.conv1(x)))  # 輸入通道為1,輸出通道為10
        x = self.incep1(x)  # 輸入通道為10,輸出通道為88
        x = F.relu(self.mp(self.conv2(x)))  # 輸入通道為88,輸出通道為20
        x = self.incep2(x)  # 輸入通道為20,輸出通道為88
        x = x.view(in_size, -1)
        x = self.fc(x)
        return x


model = Net()
# ----------------------------------------------------------------------------------------------------------------------
# ---------------------------------3.Using PyTorch API to Construct loss and optimizer----------------------------------
criterion = torch.nn.CrossEntropyLoss()
# momentum是沖量,可以從局部極值走出來盡可能找到全局最優解
optimizer = optim.SGD(model.parameters(), lr=0.01, momentum=0.5)


# ----------------------------------------------------------------------------------------------------------------------

# ---------------------------------------------4.Training Cycle(forward,backward,update)--------------------------------
def train(epoch):
    running_loss = 0.0
    for batch_idx, data in enumerate(train_loader, 0):
        inputs, target = data
        # print(target)
        optimizer.zero_grad()

        # forward + backward + update
        outputs = model(inputs)
        # print(outputs)
        loss = criterion(outputs, target)
        loss.backward()
        optimizer.step()

        running_loss += loss.item()
        if batch_idx % 300 == 299:
            print('[%d, %5d] loss: %.3f' % (epoch + 1, batch_idx + 1, running_loss / 300))
            running_loss = 0.0


def test():
    correct = 0
    total = 0
    with torch.no_grad():
        for data in test_loader:
            images, labels = data
            outputs = model(images)
            # print(outputs)
            _, predicted = torch.max(outputs.data, dim=1)
            total += labels.size(0)
            correct += (predicted == labels).sum().item()
    print('Accuracy on test set: %d %%' % (100 * correct / total))


# ----------------------------------------------------------------------------------------------------------------------

if __name__ == '__main__':
    for epoch in range(10):
        train(epoch)
        test()

           

原視訊出處https://www.bilibili.com/video/BV1Y7411d7Ys