【pytorch實作VGG網絡的建構】
- 1. 建構vgg_block函數
- 2. 定義VGG網絡
-
- 2.1 初始化VGG網絡中特征提取的參數
- 3. 擷取資料集
- 4. 其他步驟
- 5.完整代碼
- 6.實作效果
- 參考内容
1. 建構vgg_block函數
定義vgg_block函數,在這裡是定義了VGG網絡的基礎子產品.
def vgg_block(num_convs,in_channels,out_channels):
blk = []
for i in range(num_convs):
if i == 0:
blk.append(nn.Conv2d(in_channels,out_channels,kernel_size=3,padding=1))
else:
blk.append(nn.Conv2d(out_channels,out_channels,kernel_size=3,padding=1))
blk.append(nn.ReLU())
blk.append(nn.MaxPool2d(kernel_size=2,stride=2)) #最大池化操作,将高寬減半
return nn.Sequential(*blk)
提示:以下是本篇文章正文内容,下面案例可供參考
2. 定義VGG網絡
在第一步中我們建構了vgg_block函數,這個函數是實作了VGG網絡中,卷積層的堆疊,便于網絡看上去更加清晰。堆疊的卷積層,我們一眼就能看明白。
def VGG(conv_arch,fc_features,fc_hidden_neurons=4096):
net = nn.Sequential()
#卷積層
for i,(num_convs,in_channels,out_channels) in enumerate(conv_arch):
net.add_module("vgg_block" + str(i+1),vgg_block(num_convs,in_channels,out_channels))
#全連接配接層
net.add_module(
"fc",nn.Sequential(nn.Flatten(),
nn.Linear(fc_features,fc_hidden_neurons),
nn.ReLU(),
nn.Dropout(0.5),
nn.Linear(fc_hidden_neurons,fc_hidden_neurons),
nn.ReLU(),
nn.Dropout(0.5),
nn.Linear(fc_hidden_neurons,10)
)
)
return net
2.1 初始化VGG網絡中特征提取的參數
在《動手學深度學習》這本書中,conv_arch = ((1, 1, 64), (1, 64, 128), (2, 128, 256), (2, 256, 512), (2, 512, 512)) 最開始是這樣的定義的,但是由于計算過于複雜,是以就變成了下面代碼中的small_conv_arch.
fc_features = 512 * 7 * 7 # c * w * h
fc_hidden_neurons = 4096 # 任意
#因為VGG-11計算上比AlexNet更加複雜,出于測試的目的我們構造一個通道數更小,或者說更窄的網絡在Fashion-MNIST資料集上進行訓練
ratio = 8
small_conv_arch = [(1, 1, 64//ratio), (1, 64//ratio, 128//ratio), (2, 128//ratio, 256//ratio),
(2, 256//ratio, 512//ratio), (2, 512//ratio, 512//ratio)]
net = VGG(small_conv_arch, fc_features // ratio, fc_hidden_neurons // ratio)
3. 擷取資料集
不同于之前部落格中寫的擷取資料集函數,VGG網絡中擷取資料集後,對資料集進行了水準旋轉和裁剪高斯歸一化處理,提高網絡的訓練中的精确率。
def gain_datasets(batch_size):
data_path = '../../../Datasets'
data_tf = transforms.Compose([
transforms.Resize(224),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize(0, 0.01)
])
mnist_train = mnist.FashionMNIST(data_path,train=True,transform=data_tf,download=True)
mnist_test = mnist.FashionMNIST(data_path,train=False,transform=data_tf,download=True)
train_iter = data.DataLoader(mnist_train,batch_size=batch_size,shuffle=True,num_workers=4)
test_iter = data.DataLoader(mnist_test,batch_size=128,shuffle=True,num_workers=4)
return train_iter,test_iter
4. 其他步驟
建構網絡的其他步驟和我的之前的兩個部落格類似,我就不再詳細介紹了,代碼沒有太多的改動,大家可以自行參考:
- 【PyTorch】實作LeNet網絡的建構
- 【PyTorch】實作多層感覺機的建構
5.完整代碼
VGG網絡整體代碼如下:
import torch
from torch import nn
import torch.utils.data as data
from torchvision.datasets import mnist
from torchvision.transforms import transforms
import matplotlib.pyplot as plt
import time
import sys
sys.path.append('../..')
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
#使用函數vgg_block來實作VGG的基礎子產品
def vgg_block(num_convs,in_channels,out_channels):
blk = []
for i in range(num_convs):
if i == 0:
blk.append(nn.Conv2d(in_channels,out_channels,kernel_size=3,padding=1))
else:
blk.append(nn.Conv2d(out_channels,out_channels,kernel_size=3,padding=1))
blk.append(nn.ReLU())
blk.append(nn.MaxPool2d(kernel_size=2,stride=2)) #最大池化操作,将高寬減半
return nn.Sequential(*blk)
#定義網絡VGG
def VGG(conv_arch,fc_features,fc_hidden_neurons=4096):
net = nn.Sequential()
#卷積層
for i,(num_convs,in_channels,out_channels) in enumerate(conv_arch):
net.add_module("vgg_block" + str(i+1),vgg_block(num_convs,in_channels,out_channels))
#全連接配接層
net.add_module(
"fc",nn.Sequential(nn.Flatten(),
nn.Linear(fc_features,fc_hidden_neurons),
nn.ReLU(),
nn.Dropout(0.5),
nn.Linear(fc_hidden_neurons,fc_hidden_neurons),
nn.ReLU(),
nn.Dropout(0.5),
nn.Linear(fc_hidden_neurons,10)
)
)
return net
fc_features = 512 * 7 * 7 # c * w * h
fc_hidden_neurons = 4096 # 任意
#因為VGG-11計算上比AlexNet更加複雜,出于測試的目的我們構造一個通道數更小,或者說更窄的網絡在Fashion-MNIST資料集上進行訓練
ratio = 8
small_conv_arch = [(1, 1, 64//ratio), (1, 64//ratio, 128//ratio), (2, 128//ratio, 256//ratio),
(2, 256//ratio, 512//ratio), (2, 512//ratio, 512//ratio)]
net = VGG(small_conv_arch, fc_features // ratio, fc_hidden_neurons // ratio)
#擷取資料集
def gain_datasets(batch_size):
data_path = '../../../Datasets'
data_tf = transforms.Compose([
transforms.Resize(224),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize(0, 0.01)
])
mnist_train = mnist.FashionMNIST(data_path,train=True,transform=data_tf,download=True)
mnist_test = mnist.FashionMNIST(data_path,train=False,transform=data_tf,download=True)
train_iter = data.DataLoader(mnist_train,batch_size=batch_size,shuffle=True,num_workers=4)
test_iter = data.DataLoader(mnist_test,batch_size=128,shuffle=True,num_workers=4)
return train_iter,test_iter
batch_size = 256
train_iter,test_iter = gain_datasets(batch_size)
def evaluate_accuracy(data_iter,net,device=None):
if device is None and isinstance(net,nn.Module):
#如果沒有指定device就用net的device
device = list(net.parameters())[0].device
acc_sum,n = 0.0,0
with torch.no_grad():
for X,y in data_iter:
if isinstance(net,nn.Module):
net.eval() #進行模式評估,關閉dropout
acc_sum += (net(X.to(device)).argmax(dim=1) == y.to(device)).float().sum().cpu().item()
net.train() #改回訓練模式
else:
if('is_training' in net.__code__.co_varnames): #is_training 是一個參數
acc_sum += (net(X,is_training=False).argmax(dim=1) == y).float().sum().item()
else:
acc_sum += (net(X).argmax(dim=1) == y).float().sum().item()
n += y.shape[0]
return acc_sum/n
#畫圖函數
def draw_function(x_vals, y_vals, x_label, y_label, y2_vals=None, y3_vals=None,legend=None):
fig, ax1 = plt.subplots()
plt.title('VGG')
ax1.plot(x_vals, y_vals, marker='o')
ax1.plot(x_vals,y2_vals,color='r',marker='o')
ax1.set_xlabel(x_label)
ax1.set_ylabel(y_label)
plt.legend(legend)
ax2 = ax1.twinx()
ax2.plot(x_vals, y3_vals, linestyle='--',color='g')
ax2.set_ylabel('Loss')
plt.show()
lr,num_epoches = 0.001,20
optimizer = torch.optim.Adam(net.parameters(),lr)
# scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer)
#訓練
def train_VGG(net,train_iter,test_iter,batch_size,optimizer,device,num_epochs):
net = net.to(device)
print("training on ",device)
loss = nn.CrossEntropyLoss()
loss_list,train_list,test_list = [],[],[]
for epoch in range(num_epochs):
train_loss_sum,train_acc_sum,n,batch_count,startTime = 0.0,0.0,0,0,time.time()
for X,y in train_iter:
X = X.to(device)
y = y.to(device)
y_hat = net(X)
l = loss(y_hat,y)
optimizer.zero_grad()
l.backward()
optimizer.step()
train_loss_sum += l.cpu().item()
train_acc_sum += (y_hat.argmax(dim=1) == y).sum().cpu().item()
n += y.shape[0]
batch_count += 1
test_acc_sum = evaluate_accuracy(test_iter,net)
loss_list.append(train_loss_sum/n)
train_list.append(train_acc_sum/n)
test_list.append(test_acc_sum)
print('epoch %d, loss %.4f, train acc %.3f, test acc %.3f, time %.1f sec'
% (epoch + 1, train_loss_sum / n, train_acc_sum / n, test_acc_sum, time.time() - startTime))
draw_function(range(1,num_epochs+1),train_list,'epochs','Accuracy',
test_list,loss_list,['train','test','loss'],)
train_VGG(net,train_iter,test_iter,batch_size,optimizer,device,num_epoches)
6.實作效果
6.1 畫圖效果

6.2 疊代效果
參考内容
https://tangshusen.me/Dive-into-DL-PyTorch/#/chapter05_CNN/5.7_vgg