一個文本分類的小demo—基于imdb資料集
準備整理整理keras跑各種nlp的文本算法。這裡首先是文本分類。
在colab上直接跑的,因為實在太窮了,還想體會gpu的感覺。。。
這裡參考大佬的做法
首先下載下傳資料
from keras.datasets import imdb
import keras
(train_x, train_y), (test_x, text_y)=keras.datasets.imdb.load_data(num_words=20000)
print("Training entries: {}, labels: {}".format(len(train_x), len(train_y)))
Training entries: 25000, labels: 25000
看一下第一個訓練語料
[1, 14, 22, 16, 43, 530, 973, 1622, 1385, 65, 458, 4468, 66, 3941, 4, 173, 36, 256, 5, 25, 100, 43, 838, 112, 50, 670, 2, 9, 35, 480, 284, 5, 150, 4, 172, 112, 167, 2, 336, 385, 39, 4, 172, 4536, 1111, 17, 546, 38, 13, 447, 4, 192, 50, 16, 6, 147, 2025, 19, 14, 22, 4, 1920, 4613, 469, 4, 22, 71, 87, 12, 16, 43, 530, 38, 76, 15, 13, 1247, 4, 22, 17, 515, 17, 12, 16, 626, 18, 19193, 5, 62, 386, 12, 8, 316, 8, 106, 5, 4, 2223, 5244, 16, 480, 66, 3785, 33, 4, 130, 12, 16, 38, 619, 5, 25, 124, 51, 36, 135, 48, 25, 1415, 33, 6, 22, 12, 215, 28, 77, 52, 5, 14, 407, 16, 82, 10311, 8, 4, 107, 117, 5952, 15, 256, 4, 2, 7, 3766, 5, 723, 36, 71, 43, 530, 476, 26, 400, 317, 46, 7, 4, 12118, 1029, 13, 104, 88, 4, 381, 15, 297, 98, 32, 2071, 56, 26, 141, 6, 194, 7486, 18, 4, 226, 22, 21, 134, 476, 26, 480, 5, 144, 30, 5535, 18, 51, 36, 28, 224, 92, 25, 104, 4, 226, 65, 16, 38, 1334, 88, 12, 16, 283, 5, 16, 4472, 113, 103, 32, 15, 16, 5345, 19, 178, 32]
這裡是吧對應的單詞轉換成了index,我們把他轉回去看看
word_index = imdb.get_word_index()
word2id = {k:(v+3) for k, v in word_index.items()}
word2id['<PAD>'] = 0
word2id['<START>'] = 1
word2id['<UNK>'] = 2
word2id['<UNUSED>'] = 3
id2word = {v:k for k, v in word2id.items()}
def get_words(sent_ids):
return ' '.join([id2word.get(i, '?') for i in sent_ids])
sent = get_words(train_x[0])
print(sent)
輸出結果是語句的形式
<START> this film was just brilliant casting location scenery story direction everyone's really suited the part they played and you could just imagine being there robert <UNK> is an amazing actor and now the same being director <UNK> father came from the same scottish island as myself so i loved the fact there was a real connection with this film the witty remarks throughout the film were great it was just brilliant so much that i bought the film as soon as it was released for retail and would recommend it to everyone to watch and the fly fishing was amazing really cried at the end it was so sad and you know what they say if you cry at a film it must have been good and this definitely was also congratulations to the two little boy's that played the <UNK> of norman and paul they were just brilliant children are often left out of the praising list i think because the stars that play them all grown up are such a big profile for the whole film but these children are amazing and should be praised for what they have done don't you think the whole story was so lovely because it was true and was someone's life after all that was shared with us all
但是這裡面每句話和每句話之間的字元數不一樣,keras要求輸入的字元數相同,是以需要對資料進行填充。
len: 218 189
train_x = keras.preprocessing.sequence.pad_sequences(
train_x, value=word2id['<PAD>'],
padding='post', maxlen=256
)
test_x = keras.preprocessing.sequence.pad_sequences(
test_x, value=word2id['<PAD>'],
padding='post', maxlen=256
)
print(train_x[0])
print('len: ',len(train_x[0]), len(train_x[1]))
[ 1 14 22 16 43 530 973 1622 1385 65 458 4468
66 3941 4 173 36 256 5 25 100 43 838 112
50 670 2 9 35 480 284 5 150 4 172 112
167 2 336 385 39 4 172 4536 1111 17 546 38
13 447 4 192 50 16 6 147 2025 19 14 22
4 1920 4613 469 4 22 71 87 12 16 43 530
38 76 15 13 1247 4 22 17 515 17 12 16
626 18 19193 5 62 386 12 8 316 8 106 5
4 2223 5244 16 480 66 3785 33 4 130 12 16
38 619 5 25 124 51 36 135 48 25 1415 33
6 22 12 215 28 77 52 5 14 407 16 82
10311 8 4 107 117 5952 15 256 4 2 7 3766
5 723 36 71 43 530 476 26 400 317 46 7
4 12118 1029 13 104 88 4 381 15 297 98 32
2071 56 26 141 6 194 7486 18 4 226 22 21
134 476 26 480 5 144 30 5535 18 51 36 28
224 92 25 104 4 226 65 16 38 1334 88 12
16 283 5 16 4472 113 103 32 15 16 5345 19
178 32 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0]
len: 256 256
可以到所有的代碼長度都是256,而且後面沒有字元的都填上了0.
設定模型結構,同時注意在堆疊層的時候,tensorflow.python.keras方式引用和keras引用不能混合使用
from keras.layers import Dense,Embedding,GlobalAveragePooling1D
model = keras.Sequential()
model.add(Embedding(20000,32))
model.add(GlobalAveragePooling1D())
model.add(Dense(32, activation='relu'))
model.add(Dense(1, activation='sigmoid'))
model.summary()
model.compile(optimizer='adam',
loss='binary_crossentropy',
metrics=['accuracy'])
Model: "sequential_2"
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
embedding_2 (Embedding) (None, None, 32) 640000
_________________________________________________________________
global_average_pooling1d_2 ( (None, 32) 0
_________________________________________________________________
dense_3 (Dense) (None, 32) 1056
_________________________________________________________________
dense_4 (Dense) (None, 1) 33
=================================================================
Total params: 641,089
Trainable params: 641,089
Non-trainable params: 0
_________________________________________________________________
切分驗證集,對模型進行訓練
x_val = train_x[:10000]
x_train = train_x[10000:]
y_val = train_y[:10000]
y_train = train_y[10000:]
history = model.fit(x_train,y_train,
epochs=40, batch_size=512,
validation_data=(x_val, y_val),
verbose=1)
result = model.evaluate(test_x, text_y)
print(result)
Epoch 1/40
15000/15000 [==============================] - 0s 32us/step - loss: 0.6908 - accuracy: 0.6207 - val_loss: 0.6866 - val_accuracy: 0.7085
......
......
......
Epoch 38/40
15000/15000 [==============================] - 0s 20us/step - loss: 0.0237 - accuracy: 0.9975 - val_loss: 0.3760 - val_accuracy: 0.8782
Epoch 39/40
15000/15000 [==============================] - 0s 21us/step - loss: 0.0220 - accuracy: 0.9979 - val_loss: 0.3816 - val_accuracy: 0.8770
Epoch 40/40
15000/15000 [==============================] - 0s 20us/step - loss: 0.0205 - accuracy: 0.9979 - val_loss: 0.3867 - val_accuracy: 0.8772
import matplotlib.pyplot as plt
history_dict = history.history
history_dict.keys()
acc = history_dict['accuracy']
val_acc = history_dict['val_accuracy']
loss = history_dict['loss']
val_loss = history_dict['val_loss']
epochs = range(1, len(acc)+1)
plt.plot(epochs, loss, 'bo', label='train loss')
plt.plot(epochs, val_loss, 'b', label='val loss')
plt.title('Train and val loss')
plt.xlabel('Epochs')
plt.xlabel('loss')
plt.legend()
plt.show()

plt.clf() # clear figure
plt.plot(epochs, acc, 'bo', label='Training acc')
plt.plot(epochs, val_acc, 'b', label='Validation acc')
plt.title('Training and validation accuracy')
plt.xlabel('Epochs')
plt.ylabel('Accuracy')
plt.legend()
plt.show
label='Training acc')
plt.plot(epochs, val_acc, 'b', label='Validation acc')
plt.title('Training and validation accuracy')
plt.xlabel('Epochs')
plt.ylabel('Accuracy')
plt.legend()
plt.show