VGGNet------超經典神經網絡結構與PyTorch實作
-
- 1、VGGNet網絡結構
- 2、VGGNet網絡結構的優缺點
- 3、VGGNet網絡結構PyTorch實作
在上文中詳細介紹了經典神經網絡 AlexNet,它為神經網絡的發展打開了一片天地。VGGNet可以說是經典中的經典,它是所有學習深度學習的同學們都必須熟知網絡。VGGNet是AlexNet的更新版,本文将詳細介紹VGGNet的網絡結構與相應的優缺點。
1、VGGNet網絡結構
VGG有衆多版本,主要包括VGG11、VGG11-LRN、VGG13、VGG16-1、VGG16-3和VGG19,首先我們先大題看一下VGG的立體結構。

從上圖看,VGGNet與AlexNet相比好像除了增加了深度并沒有太特别的地方,依然是使用卷積、ReLU、池化、全連接配接等。但是,我們通過它的網絡細節就能發現他的高明之處,下圖為VGGNet的網絡結構圖。
對比AlexNet網絡結構,細心的同學會注意到以下幾個點:
1、VGGNet基本上采用的都是3x3卷積核、2x2 MaxPooling,并沒有出現AlexNet中的11x11卷積核、5x5卷積核、3x3 MaxPooling等較大卷積和池化操作。
2、VGGNet中是在卷積神經網絡中使用1x1卷積核,見網絡結構C中。1x1的卷積層的主要意義在于非線性變換和降維,在這裡則是非線性變換。
3、VGGNet從網絡深度中看确實超過了AlexNet,同時,VGGNet同樣進過不同版本的實驗也驗證了增加網絡深度可以提高性能,但是也驗證了不斷地疊加絡深度并不能無限的提高性能,甚至還會出現退化。
2、VGGNet網絡結構的優缺點
優點
- 網絡結構簡單,統一使用3x3卷積核、2x2池化,使網絡結構也非正常整;
- 論文提出通過小尺寸濾波器(3x3)卷積層的組合代替大尺寸濾波器(如11x11、7x7等)卷積層,這樣不僅可以減少參數還得到更好的性能;
- 使用1x1卷積核,NiN與GoogleNet均使用了此結構,這對以後的深度學習算法影響深遠;
- 訓練使用了Multi-Scale訓練(多尺度訓練)的方法,此方法不僅能增加很多資料量,同時對于防止模型過拟合有很不錯的效果。
缺點
- 3個全連接配接層耗費了更多的計算資源,是以其訓練速度也相對較慢;
- 由于網絡深度的增加,VGG需要存儲的參數也多,是以訓練的模型相對較大;
3、VGGNet網絡結構PyTorch實作
import torch.nn as nn
import torch.utils.model_zoo as model_zoo
__all__ = [
'VGG', 'vgg11', 'vgg11_bn', 'vgg13', 'vgg13_bn', 'vgg16', 'vgg16_bn',
'vgg19_bn', 'vgg19',
]
model_urls = {
'vgg11': 'https://download.pytorch.org/models/vgg11-bbd30ac9.pth',
'vgg13': 'https://download.pytorch.org/models/vgg13-c768596a.pth',
'vgg16': 'https://download.pytorch.org/models/vgg16-397923af.pth',
'vgg19': 'https://download.pytorch.org/models/vgg19-dcbb9e9d.pth',
'vgg11_bn': 'https://download.pytorch.org/models/vgg11_bn-6002323d.pth',
'vgg13_bn': 'https://download.pytorch.org/models/vgg13_bn-abd245e5.pth',
'vgg16_bn': 'https://download.pytorch.org/models/vgg16_bn-6c64b313.pth',
'vgg19_bn': 'https://download.pytorch.org/models/vgg19_bn-c79401a0.pth',
}
class VGG(nn.Module):
def __init__(self, features, num_classes=1000, init_weights=True):
super(VGG, self).__init__()
self.features = features
self.classifier = nn.Sequential(
nn.Linear(512 * 7 * 7, 4096),
nn.ReLU(True),
nn.Dropout(),
nn.Linear(4096, 4096),
nn.ReLU(True),
nn.Dropout(),
nn.Linear(4096, num_classes),
)
if init_weights:
self._initialize_weights()
def forward(self, x):
x = self.features(x)
x = x.view(x.size(0), -1)
x = self.classifier(x)
return x
def _initialize_weights(self):
for m in self.modules():
if isinstance(m, nn.Conv2d):
nn.init.kaiming_normal_(
m.weight, mode='fan_out', nonlinearity='relu')
if m.bias is not None:
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.BatchNorm2d):
nn.init.constant_(m.weight, 1)
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.Linear):
nn.init.normal_(m.weight, 0, 0.01)
nn.init.constant_(m.bias, 0)
def make_layers(cfg, batch_norm=False):
layers = []
in_channels = 3
for v in cfg:
if v == 'M':
layers += [nn.MaxPool2d(kernel_size=2, stride=2)]
else:
conv2d = nn.Conv2d(in_channels, v, kernel_size=3, padding=1)
if batch_norm:
layers += [conv2d, nn.BatchNorm2d(v), nn.ReLU(inplace=True)]
else:
layers += [conv2d, nn.ReLU(inplace=True)]
in_channels = v
return nn.Sequential(*layers)
cfg = {
'A': [64, 'M', 128, 'M', 256, 256, 'M', 512, 512, 'M', 512, 512, 'M'],
'B': [64, 64, 'M', 128, 128, 'M', 256, 256, 'M', 512, 512, 'M', 512, 512, 'M'],
'D': [64, 64, 'M', 128, 128, 'M', 256, 256, 256, 'M', 512, 512, 512, 'M', 512, 512, 512, 'M'],
'E': [64, 64, 'M', 128, 128, 'M', 256, 256, 256, 256, 'M', 512, 512, 512, 512, 'M', 512, 512, 512, 512, 'M'],
}
def vgg11(pretrained=False, **kwargs):
"""VGG 11-layer model (configuration "A")
Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet
"""
if pretrained:
kwargs['init_weights'] = False
model = VGG(make_layers(cfg['A']), **kwargs)
if pretrained:
model.load_state_dict(model_zoo.load_url(model_urls['vgg11']))
return model
def vgg11_bn(pretrained=False, **kwargs):
"""VGG 11-layer model (configuration "A") with batch normalization
Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet
"""
if pretrained:
kwargs['init_weights'] = False
model = VGG(make_layers(cfg['A'], batch_norm=True), **kwargs)
if pretrained:
model.load_state_dict(model_zoo.load_url(model_urls['vgg11_bn']))
return model
def vgg13(pretrained=False, **kwargs):
"""VGG 13-layer model (configuration "B")
Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet
"""
if pretrained:
kwargs['init_weights'] = False
model = VGG(make_layers(cfg['B']), **kwargs)
if pretrained:
model.load_state_dict(model_zoo.load_url(model_urls['vgg13']))
return model
def vgg13_bn(pretrained=False, **kwargs):
"""VGG 13-layer model (configuration "B") with batch normalization
Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet
"""
if pretrained:
kwargs['init_weights'] = False
model = VGG(make_layers(cfg['B'], batch_norm=True), **kwargs)
if pretrained:
model.load_state_dict(model_zoo.load_url(model_urls['vgg13_bn']))
return model
def vgg16(pretrained=False, **kwargs):
"""VGG 16-layer model (configuration "D")
Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet
"""
if pretrained:
kwargs['init_weights'] = False
model = VGG(make_layers(cfg['D']), **kwargs)
if pretrained:
model.load_state_dict(model_zoo.load_url(model_urls['vgg16']))
return model
def vgg16_bn(pretrained=False, **kwargs):
"""VGG 16-layer model (configuration "D") with batch normalization
Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet
"""
if pretrained:
kwargs['init_weights'] = False
model = VGG(make_layers(cfg['D'], batch_norm=True), **kwargs)
if pretrained:
model.load_state_dict(model_zoo.load_url(model_urls['vgg16_bn']))
return model
def vgg19(pretrained=False, **kwargs):
"""VGG 19-layer model (configuration "E")
Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet
"""
if pretrained:
kwargs['init_weights'] = False
model = VGG(make_layers(cfg['E']), **kwargs)
if pretrained:
model.load_state_dict(model_zoo.load_url(model_urls['vgg19']))
return model
def vgg19_bn(pretrained=False, **kwargs):
"""VGG 19-layer model (configuration 'E') with batch normalization
Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet
"""
if pretrained:
kwargs['init_weights'] = False
model = VGG(make_layers(cfg['E'], batch_norm=True), **kwargs)
if pretrained:
model.load_state_dict(model_zoo.load_url(model_urls['vgg19_bn']))
return model