看到就會想到要二分這個x的值,那麼接下來就考慮如何check()這個這個x值.
考慮使用一個優先隊列,按照可以撐的時間排序,每次給可以撐的時間最少的點加上x的電,然後每當有可以超過k的,就直接移出隊列,當隊列為空時,便為成功,然後繼續二分即可.
#include<iostream>
#include<string>
#include<math.h>
#include<algorithm>
#include<vector>
#include<queue>
//#include<bits/stdc++.h>
typedef long long ll;
#define INF 0x3f3f3f3f
ll gcd(ll a, ll b)
{
return b ? gcd(b, a % b) : a;
}
ll lcm(ll a, ll b) {
return a * b / (gcd(a, b));
}
#define PII pair<int,int>
using namespace std;
const int maxn = 2e6 + 10, mod = 1e9 + 7;
int qmi(int a, int k, int p) //快速幂模闆
{
int res = 1;
while (k)
{
if (k & 1) res = (ll)res * a % p;
k >>= 1;
a = (ll)a * a % p;
}
return res;
}
template <class T>//快讀
void read(T& x)
{
char c;
bool op = 0;
while (c = getchar(), c < '0' || c > '9')
if (c == '-')
op = 1;
x = c - '0';
while (c = getchar(), c >= '0' && c <= '9')
x = x * 10 + c - '0';
if (op)
x = -x;
}
template <class T>
void write(T x)
{
if (x < 0)
x = -x, putchar('-');
if (x >= 10)
write(x / 10);
putchar('0' + x % 10);
}
///建圖用的結構體
struct Edge
{
int v, w, next;
}edge[maxn];
int tot = 0;
int head[maxn];
inline void Add_edge(int u, int v, int w)//建立鄰接表
{
edge[++tot].next = head[u];
head[u] = tot;
edge[tot].v = v;
edge[tot].w = w;
}
///
ll a[maxn];
ll b[maxn];
ll n, k;
struct node {
ll a, b, c;
bool operator < (const node& x)const {
if (c != x.c)
return c > x.c;
if (b != x.b)
return b < x.b;
return a > x.a;
}
};
priority_queue<node> q;
bool check(ll y) {
while (!q.empty())
q.pop();
for (int i = 1; i <= n; i++)
if (a[i] / b[i] < k)
q.push({ a[i],b[i],a[i] / b[i] });
if (q.empty()) {
return true;
}
for (int i = 0; i < k; i++) {
node t = q.top();
q.pop();
if (t.c < i)
return false;
if ((t.a + y) / t.b < k)
q.push({ t.a + y,t.b,(t.a + y) / t.b });
if (q.empty())
return true;
}
return true;
}
int main() {
read(n);
read(k);
for (int i = 1; i <= n; i++)
read(a[i]);
for (int i = 1; i <= n; i++)
read(b[i]);
ll l = 0, r = 2e12;
ll ans = -1;
while (l <= r) {
ll mid = (l + r) / 2;
if (check(mid))//找最小值,是以找到符合條件的應該讓r=mid-1
{
ans = mid;
r = mid - 1;
}
else
l = mid + 1;
}
cout << ans << endl;
return 0;
}
/*
2 4
3 2
4 2
*/
很經典的二分用法,得需要牢記