import numpy as np
import operator
def createDataSet():
group=np.array([[1.0,1.1],[1.0,1.0],[0.,0.],[0.,0.1]])
labels=['A','A','B','B']
return group,labels
def classify0(inX,dataSet,labels,k):
dataSetSize=dataSet.shape[0]
diffMat=np.tile(inX,(dataSetSize,1))-dataSet
sqDiffMat=diffMat**2
sqDistances=sqDiffMat.sum(axis=1)
distances=sqDistances**0.5
sortedDistIndices=distances.argsort()
classCount={}
for i in range(k):
voteIlabel=labels[sortedDistIndices[i]]
classCount[voteIlabel]=classCount.get(voteIlabel,0)+1
sortedClassCount=sorted(classCount.items(),key=operator.itemgetter(1),reverse=True)
return sortedClassCount[0][0]
if __name__=='__main__':
group,label=createDataSet()
print(classify0([0,0],group,label,3))