天天看點

Vulkan學習(十): Staging Buffer & Index BufferStaging BufferIndex BufferCode

目錄

  • Staging Buffer
    • Transfer Queue
    • Abstracting Buffer Creation
    • Using a staging buffer
    • Conclusion
  • Index Buffer
    • Index buffer creation
    • Using an index buffer
  • Code

Staging Buffer

Transfer Queue

  緩沖區複制指令需要一個支援傳輸操作的隊列族,使用 VK_QUEUE_TRANSFER_BIT 表示。 好消息是,任何具有 VK_QUEUE_GRAPHICS_BIT 或 VK_QUEUE_COMPUTE_BIT 功能的隊列系列都已經隐式支援 VK_QUEUE_TRANSFER_BIT 操作。 在這些情況下,實作不需要在 queueFlags 中顯式列出它。也可以嘗試使用不同的queue family,專門用于傳輸操作。 要求對程式進行以下修改:

  • 修改 QueueFamilyIndices 和 findQueueFamilies 以顯式查找具有 VK_QUEUE_TRANSFER bit 而不是 VK_QUEUE_GRAPHICS_BIT 的隊列族。
  • 修改 createLogicalDevice 以請求傳輸隊列的句柄
  • 為傳輸隊列族上送出的指令緩沖區建立第二個指令池
  • 将資源的 sharedMode 更改為 VK_SHARING_MODE_CONCURRENT 并同時指定圖形和傳輸隊列族
  • 将 vkCmdCopyBuffer之類的任何傳輸指令送出到傳輸隊列而不是圖形隊列

Abstracting Buffer Creation

建立createBuffer函數,将createVertexBuffer中的代碼(mapping除外)移到其中。

void createBuffer(VkDeviceSize size, VkBufferUsageFlags usage,
			VkMemoryPropertyFlags properties, VkBuffer& buffer,
				VkDeviceMemory& bufferMemory) {
		VkBufferCreateInfo bufferInfo = {};
		bufferInfo.sType = VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO;
		bufferInfo.size = size;
		bufferInfo.usage = usage;
		bufferInfo.sharingMode = VK_SHARING_MODE_EXCLUSIVE;
	
		if (vkCreateBuffer(device, &bufferInfo, nullptr, &buffer) !=
			VK_SUCCESS) {
			throw std::runtime_error("failed to create buffer!");
		}
	
		VkMemoryRequirements memRequirements;
		vkGetBufferMemoryRequirements(device, buffer, &memRequirements);
	
		VkMemoryAllocateInfo allocInfo = {};
		allocInfo.sType = VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO;
		allocInfo.allocationSize = memRequirements.size;
		allocInfo.memoryTypeIndex =
			findMemoryType(memRequirements.memoryTypeBits, properties);
	
		if (vkAllocateMemory(device, &allocInfo, nullptr, &bufferMemory)
			!= VK_SUCCESS) {
			throw std::runtime_error("failed to allocate buffer memory!");
		}
	
		vkBindBufferMemory(device, buffer, bufferMemory, 0);
	}
           

調整createVertexBuffer函數

void createVertexBuffer() {
	
		VkDeviceSize bufferSize = sizeof(vertices[0]) * vertices.size();
			createBuffer(bufferSize, VK_BUFFER_USAGE_VERTEX_BUFFER_BIT,
				VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT |
				VK_MEMORY_PROPERTY_HOST_COHERENT_BIT, vertexBuffer,
				vertexBufferMemory);
		
		void* data;
		vkMapMemory(device, vertexBufferMemory, 0, bufferSize, 0, &data);
		memcpy(data, vertices.data(), (size_t)bufferSize);
		vkUnmapMemory(device, vertexBufferMemory);
	
	}
           

Using a staging buffer

  現在将更改 createVertexBuffer 以僅使用主機可見緩沖區作為臨時緩沖區,并使用裝置本地緩沖區作為實際頂點緩沖區。

void createVertexBuffer() {
	
		VkDeviceSize bufferSize = sizeof(vertices[0]) * vertices.size();
		VkBuffer stagingBuffer;
		VkDeviceMemory stagingBufferMemory;
		createBuffer(bufferSize, VK_BUFFER_USAGE_TRANSFER_SRC_BIT, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT |
			VK_MEMORY_PROPERTY_HOST_COHERENT_BIT, stagingBuffer, stagingBufferMemory);

		void* data;
		vkMapMemory(device, stagingBufferMemory, 0, bufferSize, 0, &data);
		memcpy(data, vertices.data(), (size_t)bufferSize);
		vkUnmapMemory(device, stagingBufferMemory);
		
		createBuffer(bufferSize, VK_BUFFER_USAGE_TRANSFER_DST_BIT | VK_BUFFER_USAGE_VERTEX_BUFFER_BIT,
				VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT, vertexBuffer, vertexBufferMemory);

	}
           

  現在使用帶有 stagingBufferMemory 的新 stagingBuffer 來映射和複制頂點資料。可使用兩個新的緩沖區使用标志:

  • VK_BUFFER_USAGE_TRANSFER_SRC_BIT:在記憶體傳輸操作中, Buffer 可以被當作源(source)使用。
  • VK_BUFFER_USAGE_TRANSFER_DST_BIT:在記憶體傳輸操作中, Buffer 可以被當作目标(destination )使用。

  vertexBuffer 現在是從裝置的本地記憶體類型配置設定的,這通常意味着我們不能使用 vkMapMemory。 但是,我們可以将資料從 stagingBuffer 複制到 vertexBuffer。 我們必須通過指定 stagingBuffer 的傳輸源标志和 vertexBuffer 的傳輸目标标志以及頂點緩沖區使用标志來表明我們打算這樣做。

  記憶體傳輸操作使用指令緩沖區執行,就像繪圖指令一樣。 是以我們必須首先配置設定一個臨時指令緩沖區。 您可能希望為這些類型的短期緩沖區建立一個單獨的指令池,因為實作可能能夠應用記憶體配置設定優化。 在這種情況下,您應該在指令池生成期間使用 VK_COMMAND_POOL_CREATE_TRANSIENT_BIT 标志。

//将資料從一個緩沖區複制到另一個緩沖區
	void copyBuffer(VkBuffer srcBuffer, VkBuffer dstBuffer, VkDeviceSize size) {

		VkCommandBufferAllocateInfo allocInfo = {};
		allocInfo.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_ALLOCATE_INFO;
		allocInfo.level = VK_COMMAND_BUFFER_LEVEL_PRIMARY;
		allocInfo.commandPool = commandPool;
		allocInfo.commandBufferCount = 1;

		VkCommandBuffer commandBuffer;
		vkAllocateCommandBuffers(device, &allocInfo, &commandBuffer);

		//recording the command buffer
		VkCommandBufferBeginInfo beginInfo = {};
		beginInfo.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_BEGIN_INFO;
		//使用指令緩沖區一次并等待從函數傳回,直到複制操作完成執行。
		beginInfo.flags = VK_COMMAND_BUFFER_USAGE_ONE_TIME_SUBMIT_BIT;
		vkBeginCommandBuffer(commandBuffer, &beginInfo);

		//與 vkMapMemory 指令不同,無法指定 VK_WHOLE_SIZE。
		VkBufferCopy copyRegion = {};
		copyRegion.srcOffset = 0; 
		copyRegion.dstOffset = 0;
		copyRegion.size = size;
		vkCmdCopyBuffer(commandBuffer, srcBuffer, dstBuffer, 1, &copyRegion);

		vkEndCommandBuffer(commandBuffer);

		//執行指令緩沖區以完成傳輸
		VkSubmitInfo submitInfo = {};
		submitInfo.sType = VK_STRUCTURE_TYPE_SUBMIT_INFO;
		submitInfo.commandBufferCount = 1;
		submitInfo.pCommandBuffers = &commandBuffer;

		vkQueueSubmit(graphicsQueue, 1, &submitInfo, VK_NULL_HANDLE);
		//與繪制指令不同,沒有需要等待的事件。 
		//還有兩種可能的方法可以等待傳輸完成。 
		//可以使用fence,并使用 vkWaitForFences 等待,
		//或使用 vkQueueWaitIdle 等待傳輸隊列變為空閑。
		//fence允許同時安排多個傳輸并等待所有傳輸完成,而不是一次執行一個。 
		vkQueueWaitIdle(graphicsQueue);
		//清除傳輸操作的指令緩沖區
		vkFreeCommandBuffers(device, commandPool, 1, &commandBuffer);
	}
	----------------------------------------------------
	copyBuffer(stagingBuffer, vertexBuffer, bufferSize);
	vkDestroyBuffer(device, stagingBuffer, nullptr);
	vkFreeMemory(device, stagingBufferMemory, nullptr);
           

Conclusion

  應該注意的是,實際應用中不應該為每個單獨的緩沖區調用 vkAllocateMemory。 同時配置設定記憶體的最大數量受到 maxMemoryAllocationCount 實體裝置的限制,即使在像 NVIDIA GTX 1080 這樣的高端硬體上也可能低至 4096。 同時為大量對象配置設定記憶體的正确方法是建立一個自定義配置設定器,通過使用我們在許多函數中看到的偏移參數在許多不同的對象之間拆分單個配置設定。可以自己實作這樣的配置設定器,也可以使用 GPUOpen 計劃提供的 VulkanMemoryAllocator 庫。

Index Buffer

Index buffer creation

void createIndexBuffer() {
	
		VkDeviceSize bufferSize = sizeof(indices[0]) * indices.size();

		VkBuffer stagingBuffer;
		VkDeviceMemory stagingBufferMemory;
		createBuffer(bufferSize, VK_BUFFER_USAGE_TRANSFER_SRC_BIT, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT |
			VK_MEMORY_PROPERTY_HOST_COHERENT_BIT, stagingBuffer, stagingBufferMemory);

		void* data;
		vkMapMemory(device, stagingBufferMemory, 0, bufferSize, 0, &data);

		memcpy(data, indices.data(), (size_t)bufferSize);
		vkUnmapMemory(device, stagingBufferMemory);

		createBuffer(bufferSize, VK_BUFFER_USAGE_TRANSFER_DST_BIT | VK_BUFFER_USAGE_INDEX_BUFFER_BIT,
			VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT, indexBuffer, indexBufferMemory);

		copyBuffer(stagingBuffer, indexBuffer, bufferSize);

		vkDestroyBuffer(device, stagingBuffer, nullptr);
		vkFreeMemory(device, stagingBufferMemory, nullptr);
	}
           

Using an index buffer

//VK_INDEX_TYPE_UINT32
	//VK_INDEX_TYPE_UINT16
	vkCmdBindIndexBuffer(commandBuffers[i], indexBuffer, 0, VK_INDEX_TYPE_UINT16);
	//前兩個參數指定索引數和執行個體數,第三個參數:我們沒有使用執行個體化,是以隻指定 1 個執行個體。 
	//下一個參數指定索引緩沖區的偏移量,使用值 1 将導緻圖形卡從第二個索引開始讀取。 
	//倒數第二個參數指定要添加到索引緩沖區中的索引的偏移量。 最後一個參數指定了一個用于執行個體化的偏移量,我們沒有使用它。
	vkCmdDrawIndexed(commandBuffers[i], static_cast<uint32_t>(indices.size()), 1, 0, 0, 0);
           

Code

#define GLFW_INCLUDE_VULKAN
#include <GLFW/glfw3.h>

#include <iostream>
#include <stdexcept>
#include <cstdlib>
#include <vector>
#include <map>
#include <optional>
#include <set>
#include <fstream>
#include <array>
#include <glm/glm.hpp>

#ifdef NDEBUG
const bool enableValidationLayers = false;
#else
const bool enableValidationLayers = true;
#endif

const std::vector<const char*> validationLayers = {
	"VK_LAYER_KHRONOS_validation"
};

struct QueueFamilyIndices {
	std::optional<uint32_t> graphicsFamily;
	std::optional<uint32_t> presentFamily;
	bool isComplete() {
		return graphicsFamily.has_value() && presentFamily.has_value();
	}
};

struct SwapChainSupportDetails {
	VkSurfaceCapabilitiesKHR capabilities;
	std::vector<VkSurfaceFormatKHR> formats;
	std::vector<VkPresentModeKHR> presentModes;
};

const std::vector<const char*> deviceExtensions = { VK_KHR_SWAPCHAIN_EXTENSION_NAME };
const int WIDTH = 800;
const int HEIGHT = 600;

static std::vector<char> readFile(const std::string& filename) {
	std::ifstream file(filename, std::ios::ate | std::ios::binary);
	if (!file.is_open()) {
		throw std::runtime_error("failed to open file!");
	}
	size_t fileSize = (size_t)file.tellg();
	std::vector<char> buffer(fileSize);
	file.seekg(0);
	file.read(buffer.data(), fileSize);
	file.close();
	return buffer;
}

const int MAX_FRAMES_IN_FLIGHT = 2;

struct Vertex {
	glm::vec2 pos;
	glm::vec3 color;
	static VkVertexInputBindingDescription getBindingDescription() {
		VkVertexInputBindingDescription bindingDescription = {};
		bindingDescription.binding = 0;
		bindingDescription.stride = sizeof(Vertex);
		bindingDescription.inputRate = VK_VERTEX_INPUT_RATE_VERTEX;
		return bindingDescription;
	}
	static std::array<VkVertexInputAttributeDescription, 2> getAttributeDescriptions() {
		std::array<VkVertexInputAttributeDescription, 2> attributeDescriptions = {};
		attributeDescriptions[0].binding = 0;
		attributeDescriptions[0].location = 0;
		attributeDescriptions[0].format = VK_FORMAT_R32G32_SFLOAT;
		attributeDescriptions[0].offset = offsetof(Vertex, pos);


		attributeDescriptions[1].binding = 0;
		attributeDescriptions[1].location = 1;
		attributeDescriptions[1].format = VK_FORMAT_R32G32B32_SFLOAT;
		attributeDescriptions[1].offset = offsetof(Vertex, color);

		return attributeDescriptions;
	}
};

//const std::vector<Vertex> vertices = {
//	{ {0.0f, -0.5f}, {1.0f, 0.0f, 0.0f}},
//	{ {0.5f, 0.5f}, {0.0f, 1.0f, 0.0f}},
//	{ {-0.5f, 0.5f}, {0.0f, 0.0f, 1.0f}}
//};


//const std::vector<Vertex> vertices = {
//	{ {0.0f, -0.5f}, {1.0f, 1.0f, 1.0f}},
//	{ {0.5f, 0.5f}, {0.0f, 1.0f, 0.0f}},
//	{ {-0.5f, 0.5f}, {0.0f, 0.0f, 1.0f}}
//};

//[4]
const std::vector<Vertex> vertices = {
	{ {-0.5f, -0.5f}, {1.0f, 0.0f, 0.0f}},
	{ {0.5f, -0.5f}, {0.0f, 1.0f, 0.0f}},
	{ {0.5f, 0.5f}, {0.0f, 0.0f, 1.0f}},
	{ {-0.5f, 0.5f}, {1.0f, 1.0f, 1.0f}}
};
//[4]
const std::vector<uint16_t> indices = {
	0, 1, 2, 2, 3, 0
};

class Application {

public:
	void run() {
		initWindow();
		initVulkan();
		mainLoop();
		cleanup();
	}
public:

	GLFWwindow* window;
	VkInstance instance;
	VkSurfaceKHR surface;
	VkDebugUtilsMessengerEXT debugMessenger;
	VkPhysicalDevice physicalDevice = VK_NULL_HANDLE;
	VkDevice device;
	VkQueue graphicsQueue;
	VkQueue presentQueue;
	VkSwapchainKHR swapChain;
	std::vector<VkImage> swapChainImages;
	VkFormat swapChainImageFormat;
	VkExtent2D swapChainExtent;
	std::vector<VkImageView> swapChainImageViews;
	VkRenderPass renderPass;
	VkPipelineLayout pipelineLayout;
	VkPipeline graphicsPipeline;
	std::vector<VkFramebuffer> swapChainFramebuffers;
	VkCommandPool commandPool;
	std::vector<VkCommandBuffer> commandBuffers;
	std::vector<VkSemaphore> imageAvailableSemaphores;
	std::vector<VkSemaphore> renderFinishedSemaphores;
	std::vector<VkFence> inFlightFences;
	std::vector<VkFence> imagesInFlight;
	size_t currentFrame = 0;
	bool framebufferResized = false;
	VkBuffer vertexBuffer;
	VkDeviceMemory vertexBufferMemory;
	//[4]
	VkBuffer indexBuffer;
	//[4]
	VkDeviceMemory indexBufferMemory;

	void initWindow() {
		glfwInit();
		glfwWindowHint(GLFW_CLIENT_API, GLFW_NO_API);
		//glfwWindowHint(GLFW_RESIZABLE, GLFW_FALSE);
		window = glfwCreateWindow(WIDTH, HEIGHT, "Vulkan", nullptr, nullptr);
		glfwSetWindowUserPointer(window, this);
		glfwSetFramebufferSizeCallback(window, framebufferResizeCallback);
	}
	void initVulkan() {
		createInstance();
		createSurface();
		setupDebugMessenger();
		pickPhysicalDevice();
		createLogicalDevice();
		createSwapChain();
		createImageViews();
		createRenderPass();
		createGraphicsPipeline();
		createFramebuffers();
		createCommandPool();
		createVertexBuffer();
		//[4]
		createIndexBuffer();
		createCommandBuffers();
		createSemaphores();
	}
	void mainLoop() {
		while (!glfwWindowShouldClose(window))
		{
			glfwPollEvents();
			drawFrame();
		}
		vkDeviceWaitIdle(device);
	}

	void cleanup() {

		cleanupSwapChain();
		//[4]
		vkDestroyBuffer(device, indexBuffer, nullptr);
		//[4]
		vkFreeMemory(device, indexBufferMemory, nullptr);
		vkDestroyBuffer(device, vertexBuffer, nullptr);
		vkFreeMemory(device, vertexBufferMemory, nullptr);
		for (size_t i = 0; i < MAX_FRAMES_IN_FLIGHT; i++) {
			vkDestroySemaphore(device, renderFinishedSemaphores[i], nullptr);
			vkDestroySemaphore(device, imageAvailableSemaphores[i], nullptr);
			vkDestroyFence(device, inFlightFences[i], nullptr);
		}
		vkDestroyDevice(device, nullptr);
		if (enableValidationLayers) {
			DestroyDebugUtilsMessengerEXT(instance, debugMessenger, nullptr);
		}
		vkDestroySurfaceKHR(instance, surface, nullptr);
		vkDestroyInstance(instance, nullptr);
		glfwDestroyWindow(window);
		glfwTerminate();
	}

	void createInstance() {

		if (enableValidationLayers && !checkValidationLayerSupport()) {
			throw std::runtime_error("validation layers requested, but not available!");
		}

		VkApplicationInfo appInfo = {};
		appInfo.sType = VK_STRUCTURE_TYPE_APPLICATION_INFO;
		appInfo.pApplicationName = "Hello Triangle";
		appInfo.applicationVersion = VK_MAKE_VERSION(1, 0, 0);
		appInfo.pEngineName = "No Engine";
		appInfo.engineVersion = VK_MAKE_VERSION(1, 0, 0);
		appInfo.apiVersion = VK_API_VERSION_1_0;

		VkInstanceCreateInfo createInfo = {};
		createInfo.sType = VK_STRUCTURE_TYPE_INSTANCE_CREATE_INFO;
		createInfo.pApplicationInfo = &appInfo;


		uint32_t glfwExtensionCount = 0;
		const char** glfwExtensions;
		glfwExtensions =
			glfwGetRequiredInstanceExtensions(&glfwExtensionCount);
		createInfo.enabledExtensionCount = glfwExtensionCount;
		createInfo.ppEnabledExtensionNames = glfwExtensions;
		createInfo.enabledLayerCount = 0;
		if (enableValidationLayers) {
			createInfo.enabledLayerCount =
				static_cast<uint32_t>(validationLayers.size());
			createInfo.ppEnabledLayerNames = validationLayers.data();
		}
		else {
			createInfo.enabledLayerCount = 0;
		}
		auto extensions = getRequiredExtensions();
		createInfo.enabledExtensionCount = static_cast<uint32_t>(extensions.size());
		createInfo.ppEnabledExtensionNames = extensions.data();
		VkDebugUtilsMessengerCreateInfoEXT debugCreateInfo;
		if (enableValidationLayers) {
			createInfo.enabledLayerCount = static_cast<uint32_t>(validationLayers.size());
			createInfo.ppEnabledLayerNames = validationLayers.data();
			populateDebugMessengerCreateInfo(debugCreateInfo);
			createInfo.pNext = (VkDebugUtilsMessengerCreateInfoEXT*)&debugCreateInfo;
		}
		else {
			createInfo.enabledLayerCount = 0;
			createInfo.pNext = nullptr;
		}
	
		if (vkCreateInstance(&createInfo, nullptr, &instance) != VK_SUCCESS)
		{
			throw std::runtime_error("failed to create instance!");

		}
		uint32_t extensionCount = 0;
		vkEnumerateInstanceExtensionProperties(nullptr, &extensionCount, nullptr);
		std::vector<VkExtensionProperties> extensionsProperties(extensionCount);
		vkEnumerateInstanceExtensionProperties(nullptr, &extensionCount, extensionsProperties.data());

		std::cout << "available extensions:" << std::endl;
		for (const auto& extension : extensionsProperties) {
			std::cout << "\t" << extension.extensionName << std::endl;
		}

	}

	bool checkValidationLayerSupport() {

		uint32_t layerCount;
		vkEnumerateInstanceLayerProperties(&layerCount, nullptr);

		std::vector<VkLayerProperties> availableLayers(layerCount);
		vkEnumerateInstanceLayerProperties(&layerCount,
			availableLayers.data());
		for (const char* layerName : validationLayers) {
			bool layerFound = false;

			for (const auto& layerProperties : availableLayers) {
				if (strcmp(layerName, layerProperties.layerName) == 0) {
					layerFound = true;
					break;
				}
			}

			if (!layerFound) {
				return false;
			}
		}

		return true;
	}

	std::vector<const char*> getRequiredExtensions() {
		uint32_t glfwExtensionCount = 0;
		const char** glfwExtensions;
		glfwExtensions = glfwGetRequiredInstanceExtensions(&glfwExtensionCount);
		std::vector<const char*> extensions(glfwExtensions, glfwExtensions + glfwExtensionCount);
		if (enableValidationLayers) {
			extensions.push_back(VK_EXT_DEBUG_UTILS_EXTENSION_NAME);

		}
		return extensions;
	}
	void populateDebugMessengerCreateInfo(VkDebugUtilsMessengerCreateInfoEXT&
		createInfo) {
		createInfo = {};
		createInfo.sType = VK_STRUCTURE_TYPE_DEBUG_UTILS_MESSENGER_CREATE_INFO_EXT;
		createInfo.messageSeverity =
			VK_DEBUG_UTILS_MESSAGE_SEVERITY_VERBOSE_BIT_EXT |
			VK_DEBUG_UTILS_MESSAGE_SEVERITY_WARNING_BIT_EXT |
			VK_DEBUG_UTILS_MESSAGE_SEVERITY_ERROR_BIT_EXT;
		createInfo.messageType =
			VK_DEBUG_UTILS_MESSAGE_TYPE_GENERAL_BIT_EXT |
			VK_DEBUG_UTILS_MESSAGE_TYPE_VALIDATION_BIT_EXT |
			VK_DEBUG_UTILS_MESSAGE_TYPE_PERFORMANCE_BIT_EXT;
		createInfo.pfnUserCallback = debugCallback;
	}

	static VKAPI_ATTR VkBool32 VKAPI_CALL debugCallback(

		VkDebugUtilsMessageSeverityFlagBitsEXT messageSeverity,
		VkDebugUtilsMessageTypeFlagsEXT messageType,
		const VkDebugUtilsMessengerCallbackDataEXT* pCallbackData,
		void* pUserData) {
		std::cerr << "validation layer: " << pCallbackData->pMessage <<
			std::endl;

		return VK_FALSE;


	}
	void createSurface() {

		if (glfwCreateWindowSurface(instance, window, nullptr, &surface) != VK_SUCCESS) {
			throw std::runtime_error("failed to create window surface!");

		}
	}
	void setupDebugMessenger() {
		if (!enableValidationLayers) return;

		VkDebugUtilsMessengerCreateInfoEXT createInfo = {};
		populateDebugMessengerCreateInfo(createInfo);
		if (CreateDebugUtilsMessengerEXT(instance, &createInfo, nullptr,
			&debugMessenger) != VK_SUCCESS) {
			throw std::runtime_error("failed to set up debug messenger!");
		}
	}

	VkResult CreateDebugUtilsMessengerEXT(VkInstance instance, const
		VkDebugUtilsMessengerCreateInfoEXT* pCreateInfo, const
		VkAllocationCallbacks* pAllocator, VkDebugUtilsMessengerEXT*
		pDebugMessenger) {
		auto func = (PFN_vkCreateDebugUtilsMessengerEXT)
			vkGetInstanceProcAddr(instance, "vkCreateDebugUtilsMessengerEXT");
		if (func != nullptr) {
			return func(instance, pCreateInfo, pAllocator, pDebugMessenger);
		}
		else {
			return VK_ERROR_EXTENSION_NOT_PRESENT;
		}
	}

	void DestroyDebugUtilsMessengerEXT(VkInstance instance,
		VkDebugUtilsMessengerEXT debugMessenger, const
		VkAllocationCallbacks* pAllocator) {
		auto func = (PFN_vkDestroyDebugUtilsMessengerEXT)
			vkGetInstanceProcAddr(instance, "vkDestroyDebugUtilsMessengerEXT");
		if (func != nullptr) {
			func(instance, debugMessenger, pAllocator);
		}
	}
	void pickPhysicalDevice() {
		uint32_t deviceCount = 0;
		vkEnumeratePhysicalDevices(instance, &deviceCount, nullptr);
		if (deviceCount == 0) {
			throw std::runtime_error("failed to find GPUs with Vulkan support!");
		}
		std::vector<VkPhysicalDevice> devices(deviceCount);
		vkEnumeratePhysicalDevices(instance, &deviceCount, devices.data());
		for (const auto& device : devices) {
			if (isDeviceSuitable(device)) {
				physicalDevice = device;
				break;
			}
		}
		if (physicalDevice == VK_NULL_HANDLE) {
			throw std::runtime_error("failed to find a suitable GPU!");
		}
		std::multimap<int, VkPhysicalDevice> candidates;
		for (const auto& device : devices) {
			int score = rateDeviceSuitability(device);
			candidates.insert(std::make_pair(score, device));

		}
		if (candidates.rbegin()->first > 0) {
			physicalDevice = candidates.rbegin()->second;
		}
		else {
			throw std::runtime_error("failed to find a suitable GPU!");
		}

	}


	bool isDeviceSuitable(VkPhysicalDevice device) {

		bool extensionsSupported = checkDeviceExtensionSupport(device);
		bool swapChainAdequate = false;
		if (extensionsSupported) {
			SwapChainSupportDetails swapChainSupport = querySwapChainSupport(device);
			swapChainAdequate = !swapChainSupport.formats.empty() && !swapChainSupport.presentModes.empty();
		}
		QueueFamilyIndices indices = findQueueFamilies(device);
		return indices.isComplete() && extensionsSupported && swapChainAdequate;
	}

	SwapChainSupportDetails querySwapChainSupport(VkPhysicalDevice device) {
		SwapChainSupportDetails details;
		vkGetPhysicalDeviceSurfaceCapabilitiesKHR(device, surface, &details.capabilities);
		uint32_t formatCount;
		vkGetPhysicalDeviceSurfaceFormatsKHR(device, surface, &formatCount, nullptr);
		if (formatCount != 0) {
			details.formats.resize(formatCount);
			vkGetPhysicalDeviceSurfaceFormatsKHR(device, surface, &formatCount, details.formats.data());

		}
		uint32_t presentModeCount;
		vkGetPhysicalDeviceSurfacePresentModesKHR(device, surface, &presentModeCount, nullptr);
		if (presentModeCount != 0) {
			details.presentModes.resize(presentModeCount);
			vkGetPhysicalDeviceSurfacePresentModesKHR(device, surface, &presentModeCount, details.presentModes.data());
		}
		return details;

	}

	QueueFamilyIndices findQueueFamilies(VkPhysicalDevice device) {
		QueueFamilyIndices indices;

		uint32_t queueFamilyCount = 0;
		vkGetPhysicalDeviceQueueFamilyProperties(device, &queueFamilyCount, nullptr);
		std::vector<VkQueueFamilyProperties> queueFamilies(queueFamilyCount);
		vkGetPhysicalDeviceQueueFamilyProperties(device, &queueFamilyCount, queueFamilies.data());
		int i = 0;
		for (const auto& queueFamily : queueFamilies) {
			VkBool32 presentSupport = false;
			vkGetPhysicalDeviceSurfaceSupportKHR(device, i, surface, &presentSupport);
			if (presentSupport) {
				indices.presentFamily = i;
			}
			if (queueFamily.queueFlags & VK_QUEUE_GRAPHICS_BIT) {
				indices.graphicsFamily = i;
				if (indices.isComplete())
					break;
			}
			i++;
		}

		return indices;
	}

	bool checkDeviceExtensionSupport(VkPhysicalDevice device) {

		uint32_t extensionCount;
		vkEnumerateDeviceExtensionProperties(device, nullptr, &extensionCount, nullptr);
		std::vector<VkExtensionProperties> availableExtensions(extensionCount);
		vkEnumerateDeviceExtensionProperties(device, nullptr, &extensionCount, availableExtensions.data());
		std::set<std::string> requiredExtensions(deviceExtensions.begin(), deviceExtensions.end());

		for (const auto& extension : availableExtensions) {
			requiredExtensions.erase(extension.extensionName);
		}
		return requiredExtensions.empty();
	}

	int rateDeviceSuitability(VkPhysicalDevice device) {

		VkPhysicalDeviceProperties deviceProperties;
		vkGetPhysicalDeviceProperties(device, &deviceProperties);

		int score = 0;
		if (deviceProperties.deviceType == VK_PHYSICAL_DEVICE_TYPE_DISCRETE_GPU) {
			score += 1000;
		}
		score += deviceProperties.limits.maxImageDimension2D;

		VkPhysicalDeviceFeatures deviceFeatures;
		vkGetPhysicalDeviceFeatures(device, &deviceFeatures);
		if (!deviceFeatures.geometryShader) {
			return 0;
		}
		return score;

	}
	void createLogicalDevice() {
		QueueFamilyIndices indices = findQueueFamilies(physicalDevice);
		VkDeviceQueueCreateInfo queueCreateInfo = {};
		queueCreateInfo.sType = VK_STRUCTURE_TYPE_DEVICE_QUEUE_CREATE_INFO;
		queueCreateInfo.queueFamilyIndex = indices.graphicsFamily.value();
		queueCreateInfo.queueCount = 1;
		float queuePriority = 1.0f;
		queueCreateInfo.pQueuePriorities = &queuePriority;
		VkPhysicalDeviceFeatures deviceFeatures = {};

		VkDeviceCreateInfo createInfo = {};
		createInfo.sType = VK_STRUCTURE_TYPE_DEVICE_CREATE_INFO;
		createInfo.pQueueCreateInfos = &queueCreateInfo;
		createInfo.queueCreateInfoCount = 1;
		createInfo.pEnabledFeatures = &deviceFeatures;

		createInfo.enabledExtensionCount = 0;
		if (enableValidationLayers) {
			createInfo.enabledLayerCount = static_cast<uint32_t>(validationLayers.size());
			createInfo.ppEnabledLayerNames = validationLayers.data();

		}
		else {
			createInfo.enabledLayerCount = 0;

		}

		std::vector<VkDeviceQueueCreateInfo> queueCreateInfos;
		std::set<uint32_t> uniqueQueueFamilies = { indices.graphicsFamily.value(), indices.presentFamily.value() };
		queuePriority = 1.0f;
		for (uint32_t queueFamily : uniqueQueueFamilies) {
			VkDeviceQueueCreateInfo queueCreateInfo = {};
			queueCreateInfo.sType = VK_STRUCTURE_TYPE_DEVICE_QUEUE_CREATE_INFO;
			queueCreateInfo.queueFamilyIndex = queueFamily;
			queueCreateInfo.queueCount = 1;
			queueCreateInfo.pQueuePriorities = &queuePriority;
			queueCreateInfos.push_back(queueCreateInfo);

		}
		createInfo.queueCreateInfoCount =
			static_cast<uint32_t>(queueCreateInfos.size());
		createInfo.pQueueCreateInfos = queueCreateInfos.data();
		createInfo.enabledExtensionCount = static_cast<uint32_t>(deviceExtensions.size());
		createInfo.ppEnabledExtensionNames = deviceExtensions.data();
		if (vkCreateDevice(physicalDevice, &createInfo, nullptr, &device) != VK_SUCCESS) {
			throw std::runtime_error("failed to create logical device!");
		}
		vkGetDeviceQueue(device, indices.graphicsFamily.value(), 0, &graphicsQueue);
		vkGetDeviceQueue(device, indices.presentFamily.value(), 0, &presentQueue);

	}

	void createSwapChain() {
		SwapChainSupportDetails swapChainSupport = querySwapChainSupport(physicalDevice);
		VkSurfaceFormatKHR surfaceFormat = chooseSwapSurfaceFormat(swapChainSupport.formats);
		VkPresentModeKHR presentMode = chooseSwapPresentMode(swapChainSupport.presentModes);
		VkExtent2D extent = chooseSwapExtent(swapChainSupport.capabilities);
		uint32_t imageCount = swapChainSupport.capabilities.minImageCount + 1;
		if (swapChainSupport.capabilities.maxImageCount > 0 && imageCount > swapChainSupport.capabilities.maxImageCount) {
			imageCount = swapChainSupport.capabilities.maxImageCount;
		}

		VkSwapchainCreateInfoKHR createInfo = {};
		createInfo.sType = VK_STRUCTURE_TYPE_SWAPCHAIN_CREATE_INFO_KHR;
		createInfo.surface = surface;

		createInfo.minImageCount = imageCount;
		createInfo.imageFormat = surfaceFormat.format;
		createInfo.imageColorSpace = surfaceFormat.colorSpace;
		createInfo.imageExtent = extent;
		createInfo.imageArrayLayers = 1;
		createInfo.imageUsage = VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT;

		QueueFamilyIndices indices = findQueueFamilies(physicalDevice);
		uint32_t queueFamilyIndices[] = { indices.graphicsFamily.value(),
		indices.presentFamily.value() };
		if (indices.graphicsFamily != indices.presentFamily) {
			createInfo.imageSharingMode = VK_SHARING_MODE_CONCURRENT;
			createInfo.queueFamilyIndexCount = 2;
			createInfo.pQueueFamilyIndices = queueFamilyIndices;
		}
		else {
			createInfo.imageSharingMode = VK_SHARING_MODE_EXCLUSIVE;
			createInfo.queueFamilyIndexCount = 0; // Optional
			createInfo.pQueueFamilyIndices = nullptr; // Optional
		}
		createInfo.preTransform = swapChainSupport.capabilities.currentTransform;
		createInfo.compositeAlpha = VK_COMPOSITE_ALPHA_OPAQUE_BIT_KHR;
		createInfo.presentMode = presentMode;
		createInfo.clipped = VK_TRUE;
		createInfo.oldSwapchain = VK_NULL_HANDLE;

		if (vkCreateSwapchainKHR(device, &createInfo, nullptr, &swapChain) != VK_SUCCESS) {
			throw std::runtime_error("failed to create swap chain!");
		}

		vkGetSwapchainImagesKHR(device, swapChain, &imageCount, nullptr);
		swapChainImages.resize(imageCount);
		vkGetSwapchainImagesKHR(device, swapChain, &imageCount, swapChainImages.data());
		swapChainImageFormat = surfaceFormat.format;
		swapChainExtent = extent;
	}

	VkSurfaceFormatKHR chooseSwapSurfaceFormat(const std::vector<VkSurfaceFormatKHR>& availableFormats) {

		for (const auto& availableFormat : availableFormats) {
			if (availableFormat.format == VK_FORMAT_B8G8R8A8_SRGB
				&& availableFormat.colorSpace == VK_COLOR_SPACE_SRGB_NONLINEAR_KHR) {
				return availableFormat;
			}
		}
		return availableFormats[0];
	}

	VkPresentModeKHR chooseSwapPresentMode(const std::vector<VkPresentModeKHR>& availablePresentModes) {
		for (const auto& availablePresentMode : availablePresentModes) {
			if (availablePresentMode == VK_PRESENT_MODE_MAILBOX_KHR) {
				return availablePresentMode;
			}
		}
		return VK_PRESENT_MODE_FIFO_KHR;
	}
	VkExtent2D chooseSwapExtent(const VkSurfaceCapabilitiesKHR& capabilities) {


		if (capabilities.currentExtent.width != UINT32_MAX) {
			return capabilities.currentExtent;
		}
		else {
			int width, height;
			glfwGetFramebufferSize(window, &width, &height);
			VkExtent2D actualExtent = { static_cast<uint32_t>(width), static_cast<uint32_t>(height) };
			
			actualExtent.width = std::max(capabilities.minImageExtent.width,
				std::min(capabilities.maxImageExtent.width, actualExtent.width));
			actualExtent.height = std::max(capabilities.minImageExtent.height,
				std::min(capabilities.maxImageExtent.height, actualExtent.height));
			return actualExtent;
		}
	}


	void createImageViews() {

		swapChainImageViews.resize(swapChainImages.size());
		for (size_t i = 0; i < swapChainImages.size(); i++) {

			VkImageViewCreateInfo createInfo = {};
			createInfo.sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO;
			createInfo.image = swapChainImages[i];
			createInfo.viewType = VK_IMAGE_VIEW_TYPE_2D;
			createInfo.format = swapChainImageFormat;
			createInfo.components.r = VK_COMPONENT_SWIZZLE_IDENTITY; 
			createInfo.components.g = VK_COMPONENT_SWIZZLE_IDENTITY;
			createInfo.components.b = VK_COMPONENT_SWIZZLE_IDENTITY;
			createInfo.components.a = VK_COMPONENT_SWIZZLE_IDENTITY;
			createInfo.subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
			createInfo.subresourceRange.baseMipLevel = 0;
			createInfo.subresourceRange.levelCount = 1;
			createInfo.subresourceRange.baseArrayLayer = 0;
			createInfo.subresourceRange.layerCount = 1;
			if (vkCreateImageView(device, &createInfo, nullptr, &swapChainImageViews[i]) != VK_SUCCESS) {
				throw std::runtime_error("failed to create image views!");
			}

		}
	}

	void createRenderPass() {
		VkAttachmentDescription colorAttachment = {};
		colorAttachment.format = swapChainImageFormat;
		colorAttachment.samples = VK_SAMPLE_COUNT_1_BIT;
		colorAttachment.loadOp = VK_ATTACHMENT_LOAD_OP_CLEAR;
		colorAttachment.storeOp = VK_ATTACHMENT_STORE_OP_STORE;
		colorAttachment.stencilLoadOp = VK_ATTACHMENT_LOAD_OP_DONT_CARE;
		colorAttachment.stencilStoreOp = VK_ATTACHMENT_STORE_OP_DONT_CARE;
		colorAttachment.initialLayout = VK_IMAGE_LAYOUT_UNDEFINED;
		colorAttachment.finalLayout = VK_IMAGE_LAYOUT_PRESENT_SRC_KHR;

		VkAttachmentReference colorAttachmentRef = {};
		colorAttachmentRef.attachment = 0;
		colorAttachmentRef.layout = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL;

		VkSubpassDescription subpass = {};
		subpass.pipelineBindPoint = VK_PIPELINE_BIND_POINT_GRAPHICS;
		subpass.colorAttachmentCount = 1;
		subpass.pColorAttachments = &colorAttachmentRef;

		VkRenderPassCreateInfo renderPassInfo = {};
		renderPassInfo.sType = VK_STRUCTURE_TYPE_RENDER_PASS_CREATE_INFO;
		renderPassInfo.attachmentCount = 1;
		renderPassInfo.pAttachments = &colorAttachment;
		renderPassInfo.subpassCount = 1;
		renderPassInfo.pSubpasses = &subpass;

		if (vkCreateRenderPass(device, &renderPassInfo, nullptr, &renderPass) != VK_SUCCESS)
		{

			throw std::runtime_error("failed to create render pass!");
		}


	}
	void createGraphicsPipeline() {

		auto vertShaderCode = readFile("shaders/vert.spv");
		auto fragShaderCode = readFile("shaders/frag.spv");
		VkShaderModule vertShaderModule = createShaderModule(vertShaderCode);
		VkShaderModule fragShaderModule = createShaderModule(fragShaderCode);

		VkPipelineShaderStageCreateInfo vertShaderStageInfo = {};
		vertShaderStageInfo.sType = VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO;
		vertShaderStageInfo.stage = VK_SHADER_STAGE_VERTEX_BIT;
		vertShaderStageInfo.module = vertShaderModule;
		vertShaderStageInfo.pName = "main";

		VkPipelineShaderStageCreateInfo fragShaderStageInfo = {};
		fragShaderStageInfo.sType = VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO;
		fragShaderStageInfo.stage = VK_SHADER_STAGE_FRAGMENT_BIT;
		fragShaderStageInfo.module = fragShaderModule;
		fragShaderStageInfo.pName = "main";
		VkPipelineShaderStageCreateInfo shaderStages[] = { vertShaderStageInfo, fragShaderStageInfo };


		

		VkPipelineVertexInputStateCreateInfo vertexInputInfo = {};
		auto bindingDescription = Vertex::getBindingDescription();
		auto attributeDescriptions = Vertex::getAttributeDescriptions();
		vertexInputInfo.sType = VK_STRUCTURE_TYPE_PIPELINE_VERTEX_INPUT_STATE_CREATE_INFO;
		vertexInputInfo.vertexBindingDescriptionCount = 1;
		vertexInputInfo.vertexAttributeDescriptionCount = static_cast<uint32_t>(attributeDescriptions.size());
		vertexInputInfo.pVertexBindingDescriptions = &bindingDescription; 
		vertexInputInfo.pVertexAttributeDescriptions = attributeDescriptions.data();


		VkPipelineInputAssemblyStateCreateInfo inputAssembly = {};
		inputAssembly.sType = VK_STRUCTURE_TYPE_PIPELINE_INPUT_ASSEMBLY_STATE_CREATE_INFO;
		inputAssembly.topology = VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST;
		inputAssembly.primitiveRestartEnable = VK_FALSE;

		VkViewport viewport = {};
		viewport.x = 0.0f;
		viewport.y = 0.0f;
		viewport.width = (float)swapChainExtent.width;
		viewport.height = (float)swapChainExtent.height;
		viewport.minDepth = 0.0f;
		viewport.maxDepth = 1.0f;

		VkRect2D scissor = {};
		scissor.offset = { 0, 0 };
		scissor.extent = swapChainExtent;

		VkPipelineViewportStateCreateInfo viewportState = {};
		viewportState.sType = VK_STRUCTURE_TYPE_PIPELINE_VIEWPORT_STATE_CREATE_INFO;
		viewportState.viewportCount = 1;
		viewportState.pViewports = &viewport;
		viewportState.scissorCount = 1;
		viewportState.pScissors = &scissor;

		VkPipelineRasterizationStateCreateInfo rasterizer = {};
		rasterizer.sType = VK_STRUCTURE_TYPE_PIPELINE_RASTERIZATION_STATE_CREATE_INFO;
		rasterizer.depthClampEnable = VK_FALSE;
		rasterizer.rasterizerDiscardEnable = VK_FALSE;
		rasterizer.polygonMode = VK_POLYGON_MODE_FILL;
		rasterizer.lineWidth = 1.0f;
		rasterizer.cullMode = VK_CULL_MODE_BACK_BIT;
		rasterizer.frontFace = VK_FRONT_FACE_CLOCKWISE;
		rasterizer.depthBiasEnable = VK_FALSE;
		rasterizer.depthBiasConstantFactor = 0.0f;
		rasterizer.depthBiasClamp = 0.0f;
		rasterizer.depthBiasSlopeFactor = 0.0f;

		VkPipelineMultisampleStateCreateInfo multisampling = {};
		multisampling.sType = VK_STRUCTURE_TYPE_PIPELINE_MULTISAMPLE_STATE_CREATE_INFO;
		multisampling.sampleShadingEnable = VK_FALSE;
		multisampling.rasterizationSamples = VK_SAMPLE_COUNT_1_BIT;
		multisampling.minSampleShading = 1.0f;
		multisampling.pSampleMask = nullptr; 
		multisampling.alphaToCoverageEnable = VK_FALSE; 
		multisampling.alphaToOneEnable = VK_FALSE; 

		VkPipelineColorBlendAttachmentState colorBlendAttachment = {};
		colorBlendAttachment.colorWriteMask = VK_COLOR_COMPONENT_R_BIT |
			VK_COLOR_COMPONENT_G_BIT | VK_COLOR_COMPONENT_B_BIT |
			VK_COLOR_COMPONENT_A_BIT;
		colorBlendAttachment.blendEnable = VK_FALSE;
		colorBlendAttachment.srcColorBlendFactor = VK_BLEND_FACTOR_ONE;
		colorBlendAttachment.dstColorBlendFactor = VK_BLEND_FACTOR_ZERO;
		colorBlendAttachment.colorBlendOp = VK_BLEND_OP_ADD;
		colorBlendAttachment.srcAlphaBlendFactor = VK_BLEND_FACTOR_ONE;
		colorBlendAttachment.dstAlphaBlendFactor = VK_BLEND_FACTOR_ZERO;
		colorBlendAttachment.alphaBlendOp = VK_BLEND_OP_ADD;


		colorBlendAttachment.blendEnable = VK_TRUE;
		colorBlendAttachment.srcColorBlendFactor = VK_BLEND_FACTOR_SRC_ALPHA;
		colorBlendAttachment.dstColorBlendFactor = VK_BLEND_FACTOR_ONE_MINUS_SRC_ALPHA;
		colorBlendAttachment.colorBlendOp = VK_BLEND_OP_ADD;
		colorBlendAttachment.srcAlphaBlendFactor = VK_BLEND_FACTOR_ONE;
		colorBlendAttachment.dstAlphaBlendFactor = VK_BLEND_FACTOR_ZERO;
		colorBlendAttachment.alphaBlendOp = VK_BLEND_OP_ADD;

		VkPipelineColorBlendStateCreateInfo colorBlending = {};
		colorBlending.sType = VK_STRUCTURE_TYPE_PIPELINE_COLOR_BLEND_STATE_CREATE_INFO;
		colorBlending.logicOpEnable = VK_FALSE;
		colorBlending.logicOp = VK_LOGIC_OP_COPY;
		colorBlending.attachmentCount = 1;
		colorBlending.pAttachments = &colorBlendAttachment;
		colorBlending.blendConstants[0] = 0.0f; 
		colorBlending.blendConstants[1] = 0.0f; 
		colorBlending.blendConstants[2] = 0.0f; 
		colorBlending.blendConstants[3] = 0.0f; 

		VkDynamicState dynamicStates[] = {
			 VK_DYNAMIC_STATE_VIEWPORT,
			 VK_DYNAMIC_STATE_LINE_WIDTH
		};

		VkPipelineDynamicStateCreateInfo dynamicState = {};
		dynamicState.sType = VK_STRUCTURE_TYPE_PIPELINE_DYNAMIC_STATE_CREATE_INFO;
		dynamicState.dynamicStateCount = 2;
		dynamicState.pDynamicStates = dynamicStates;
		VkPipelineLayoutCreateInfo pipelineLayoutInfo = {};
		pipelineLayoutInfo.sType = VK_STRUCTURE_TYPE_PIPELINE_LAYOUT_CREATE_INFO;
		pipelineLayoutInfo.setLayoutCount = 0; 
		pipelineLayoutInfo.pSetLayouts = nullptr; 
		pipelineLayoutInfo.pushConstantRangeCount = 0; 
		pipelineLayoutInfo.pPushConstantRanges = nullptr; 

		if (vkCreatePipelineLayout(device, &pipelineLayoutInfo, nullptr, &pipelineLayout) != VK_SUCCESS) {
			throw std::runtime_error("failed to create pipeline layout!");
		}


		VkGraphicsPipelineCreateInfo pipelineInfo = {};
		pipelineInfo.sType = VK_STRUCTURE_TYPE_GRAPHICS_PIPELINE_CREATE_INFO;
		pipelineInfo.stageCount = 2;
		pipelineInfo.pStages = shaderStages;

		pipelineInfo.pVertexInputState = &vertexInputInfo;
		pipelineInfo.pInputAssemblyState = &inputAssembly;
		pipelineInfo.pViewportState = &viewportState;
		pipelineInfo.pRasterizationState = &rasterizer;
		pipelineInfo.pMultisampleState = &multisampling;
		pipelineInfo.pDepthStencilState = nullptr; 
		pipelineInfo.pColorBlendState = &colorBlending;
		pipelineInfo.pDynamicState = nullptr; 

		pipelineInfo.layout = pipelineLayout;
		pipelineInfo.renderPass = renderPass;
		pipelineInfo.subpass = 0;
		pipelineInfo.basePipelineHandle = VK_NULL_HANDLE; 
		pipelineInfo.basePipelineIndex = -1;


		if (vkCreateGraphicsPipelines(device, VK_NULL_HANDLE, 1, &pipelineInfo, nullptr, &graphicsPipeline) != VK_SUCCESS) {
			throw std::runtime_error("failed to create graphics pipeline!");
		}


		vkDestroyShaderModule(device, fragShaderModule, nullptr);
		vkDestroyShaderModule(device, vertShaderModule, nullptr);
	}


	VkShaderModule createShaderModule(const std::vector<char>& code) {
		VkShaderModuleCreateInfo createInfo = {};
		createInfo.sType = VK_STRUCTURE_TYPE_SHADER_MODULE_CREATE_INFO;
		createInfo.codeSize = code.size();
		createInfo.pCode = reinterpret_cast<const uint32_t*>(code.data());
		VkShaderModule shaderModule;
		if (vkCreateShaderModule(device, &createInfo, nullptr, &shaderModule) != VK_SUCCESS) {
			throw std::runtime_error("failed to create shader module!");
		}
		return shaderModule;
	}

	void createFramebuffers()
	{
		swapChainFramebuffers.resize(swapChainImageViews.size());

		for (size_t i = 0; i < swapChainImageViews.size(); i++) {

			VkImageView attachments[] = { swapChainImageViews[i] };

			VkFramebufferCreateInfo framebufferInfo = {};
			framebufferInfo.sType = VK_STRUCTURE_TYPE_FRAMEBUFFER_CREATE_INFO;
			framebufferInfo.renderPass = renderPass;
			framebufferInfo.attachmentCount = 1;
			framebufferInfo.pAttachments = attachments;
			framebufferInfo.width = swapChainExtent.width;
			framebufferInfo.height = swapChainExtent.height;
			framebufferInfo.layers = 1;

			if (vkCreateFramebuffer(device, &framebufferInfo, nullptr, &swapChainFramebuffers[i]) != VK_SUCCESS) {
				throw std::runtime_error("failed to create framebuffer!");
			}
		}

	}
	void createCommandPool() {

		QueueFamilyIndices queueFamilyIndices = findQueueFamilies(physicalDevice);

		VkCommandPoolCreateInfo poolInfo = {};
		poolInfo.sType = VK_STRUCTURE_TYPE_COMMAND_POOL_CREATE_INFO;
		poolInfo.queueFamilyIndex = queueFamilyIndices.graphicsFamily.value();
		poolInfo.flags = 0; 

		if (vkCreateCommandPool(device, &poolInfo, nullptr, &commandPool) != VK_SUCCESS) {
			throw std::runtime_error("failed to create command pool!");
		}

	}

	void createCommandBuffers() {
		commandBuffers.resize(swapChainFramebuffers.size());

		VkCommandBufferAllocateInfo allocInfo = {};
		allocInfo.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_ALLOCATE_INFO;
		allocInfo.commandPool = commandPool;
		allocInfo.level = VK_COMMAND_BUFFER_LEVEL_PRIMARY;
		allocInfo.commandBufferCount = (uint32_t)commandBuffers.size();

		if (vkAllocateCommandBuffers(device, &allocInfo, commandBuffers.data()) != VK_SUCCESS) {
			throw std::runtime_error("failed to allocate command buffers!");
		}

		for (size_t i = 0; i < commandBuffers.size(); i++) {

			VkCommandBufferBeginInfo beginInfo = {};
			beginInfo.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_BEGIN_INFO;
			beginInfo.flags = 0;
			beginInfo.pInheritanceInfo = nullptr; 

			if (vkBeginCommandBuffer(commandBuffers[i], &beginInfo) != VK_SUCCESS) {
				throw std::runtime_error("failed to begin recording command buffer!");
			}

			VkRenderPassBeginInfo renderPassInfo = {};
			renderPassInfo.sType = VK_STRUCTURE_TYPE_RENDER_PASS_BEGIN_INFO;
			renderPassInfo.renderPass = renderPass;
			renderPassInfo.framebuffer = swapChainFramebuffers[i];
			renderPassInfo.renderArea.offset = { 0, 0 }; 
			renderPassInfo.renderArea.extent = swapChainExtent;

			VkClearValue clearColor = { 0.0f, 0.0f, 0.0f, 1.0f };
			renderPassInfo.clearValueCount = 1;
			renderPassInfo.pClearValues = &clearColor;
			vkCmdBeginRenderPass(commandBuffers[i], &renderPassInfo, VK_SUBPASS_CONTENTS_INLINE);

			vkCmdBindPipeline(commandBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, graphicsPipeline);

			VkBuffer vertexBuffers[] = { vertexBuffer };
			VkDeviceSize offsets[] = { 0 };
			vkCmdBindVertexBuffers(commandBuffers[i], 0, 1, vertexBuffers, offsets);

			//[4]VK_INDEX_TYPE_UINT32
			//[4]VK_INDEX_TYPE_UINT16
			vkCmdBindIndexBuffer(commandBuffers[i], indexBuffer, 0, VK_INDEX_TYPE_UINT16);


			//vkCmdDraw(commandBuffers[i], static_cast<uint32_t>(vertices.size()), 1, 0, 0);
			//vkCmdDraw(commandBuffers[i], 3, 1, 0, 0);
			//or
			//[4]前兩個參數指定索引數和執行個體數,第三個參數:我們沒有使用執行個體化,是以隻指定 1 個執行個體。 
			//[4]下一個參數指定索引緩沖區的偏移量,使用值 1 将導緻圖形卡從第二個索引開始讀取。 
			//[4]倒數第二個參數指定要添加到索引緩沖區中的索引的偏移量。 最後一個參數指定了一個用于執行個體化的偏移量,我們沒有使用它。
			vkCmdDrawIndexed(commandBuffers[i], static_cast<uint32_t>(indices.size()), 1, 0, 0, 0);

			if (vkEndCommandBuffer(commandBuffers[i]) != VK_SUCCESS) {
				throw std::runtime_error("failed to record command buffer!");
			}


		}

	}

	void createSemaphores() {

		imageAvailableSemaphores.resize(MAX_FRAMES_IN_FLIGHT);
		renderFinishedSemaphores.resize(MAX_FRAMES_IN_FLIGHT);
		inFlightFences.resize(MAX_FRAMES_IN_FLIGHT);
		imagesInFlight.resize(swapChainImages.size(), VK_NULL_HANDLE);


		VkSemaphoreCreateInfo semaphoreInfo = {};
		semaphoreInfo.sType = VK_STRUCTURE_TYPE_SEMAPHORE_CREATE_INFO;
		VkFenceCreateInfo fenceInfo = {};
		fenceInfo.sType = VK_STRUCTURE_TYPE_FENCE_CREATE_INFO;
		fenceInfo.flags = VK_FENCE_CREATE_SIGNALED_BIT;

		for (size_t i = 0; i < MAX_FRAMES_IN_FLIGHT; i++) {
			if (vkCreateSemaphore(device, &semaphoreInfo, nullptr, &imageAvailableSemaphores[i]) != VK_SUCCESS ||
				vkCreateSemaphore(device, &semaphoreInfo, nullptr, &renderFinishedSemaphores[i]) != VK_SUCCESS ||
				vkCreateFence(device, &fenceInfo, nullptr, &inFlightFences[i]) != VK_SUCCESS) {
				throw std::runtime_error("failed to create semaphores for a frame!");
			}
		}


	}

	void drawFrame() {

		uint32_t imageIndex;
		VkResult result = vkAcquireNextImageKHR(device, swapChain, UINT64_MAX, imageAvailableSemaphores[currentFrame], VK_NULL_HANDLE, &imageIndex);
		if (result == VK_ERROR_OUT_OF_DATE_KHR) {
			recreateSwapChain();
			return;
		}
		else if (result != VK_SUCCESS && result != VK_SUBOPTIMAL_KHR) {
			
			throw std::runtime_error("failed to acquire swap chain image!");
		}

		if (imagesInFlight[imageIndex] != VK_NULL_HANDLE) {
			vkWaitForFences(device, 1, &imagesInFlight[imageIndex], VK_TRUE, UINT64_MAX);
		}
		imagesInFlight[imageIndex] = inFlightFences[currentFrame];

		VkSubmitInfo submitInfo = {};
		submitInfo.sType = VK_STRUCTURE_TYPE_SUBMIT_INFO;
		VkSemaphore waitSemaphores[] = { imageAvailableSemaphores[currentFrame] };
		VkPipelineStageFlags waitStages[] = { VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT };
		submitInfo.waitSemaphoreCount = 1;
		submitInfo.pWaitSemaphores = waitSemaphores;
		submitInfo.pWaitDstStageMask = waitStages;
		submitInfo.commandBufferCount = 1;
		submitInfo.pCommandBuffers = &commandBuffers[imageIndex];

		VkSemaphore signalSemaphores[] = { renderFinishedSemaphores[currentFrame] };
		submitInfo.signalSemaphoreCount = 1;
		submitInfo.pSignalSemaphores = signalSemaphores;

		vkResetFences(device, 1, &inFlightFences[currentFrame]);

		if (vkQueueSubmit(graphicsQueue, 1, &submitInfo, inFlightFences[currentFrame]) != VK_SUCCESS) {
			throw std::runtime_error("failed to submit draw command buffer!");
		}

		VkPresentInfoKHR presentInfo = {};
		presentInfo.sType = VK_STRUCTURE_TYPE_PRESENT_INFO_KHR;
		presentInfo.waitSemaphoreCount = 1;
		presentInfo.pWaitSemaphores = signalSemaphores;

		VkSwapchainKHR swapChains[] = { swapChain };
		presentInfo.swapchainCount = 1;
		presentInfo.pSwapchains = swapChains;
		presentInfo.pImageIndices = &imageIndex;
		presentInfo.pResults = nullptr; 

		result = vkQueuePresentKHR(presentQueue, &presentInfo);


		if (result == VK_ERROR_OUT_OF_DATE_KHR || result == VK_SUBOPTIMAL_KHR || framebufferResized) {
			framebufferResized = false;
			recreateSwapChain();
		}
		else if (result != VK_SUCCESS) {
			throw std::runtime_error("failed to present swap chain image!");
		}

		currentFrame = (currentFrame + 1) % MAX_FRAMES_IN_FLIGHT;
		vkQueueWaitIdle(presentQueue);

	}

	void cleanupSwapChain() {

		for (size_t i = 0; i < swapChainFramebuffers.size(); i++) {
			vkDestroyFramebuffer(device, swapChainFramebuffers[i], nullptr);
		}
		vkFreeCommandBuffers(device, commandPool, static_cast<uint32_t>(commandBuffers.size()), commandBuffers.data());
		vkDestroyPipeline(device, graphicsPipeline, nullptr);
		vkDestroyPipelineLayout(device, pipelineLayout, nullptr);
		vkDestroyRenderPass(device, renderPass, nullptr);
		for (size_t i = 0; i < swapChainImageViews.size(); i++) {
			vkDestroyImageView(device, swapChainImageViews[i], nullptr);
		}
		vkDestroySwapchainKHR(device, swapChain, nullptr);
	}

	void recreateSwapChain() {

		int width = 0, height = 0;
		glfwGetFramebufferSize(window, &width, &height);
		while (width == 0 || height == 0) {
			glfwGetFramebufferSize(window, &width, &height);
			glfwWaitEvents();

		}

		vkDeviceWaitIdle(device);

		cleanupSwapChain();

		createSwapChain();
		createImageViews();
		createRenderPass();
		createGraphicsPipeline();
		createFramebuffers();
		createCommandBuffers();
	}

	static void framebufferResizeCallback(GLFWwindow* window, int width, int height) {
		auto app = reinterpret_cast<Application*>(glfwGetWindowUserPointer(window));
		app->framebufferResized = true;
	}
	void createVertexBuffer() {

		//VkBufferCreateInfo bufferInfo = {};
		//bufferInfo.sType = VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO;
		//bufferInfo.size = sizeof(vertices[0]) * vertices.size();
		//bufferInfo.usage = VK_BUFFER_USAGE_VERTEX_BUFFER_BIT;
		//bufferInfo.sharingMode = VK_SHARING_MODE_EXCLUSIVE;
		//bufferInfo.flags = 0;

		//if (vkCreateBuffer(device, &bufferInfo, nullptr, &vertexBuffer) != VK_SUCCESS) {
		//	throw std::runtime_error("failed to create vertex buffer!");
		//}
		

		//VkMemoryRequirements memRequirements;
		//vkGetBufferMemoryRequirements(device, vertexBuffer, &memRequirements);

		//VkMemoryAllocateInfo allocInfo = {};
		//allocInfo.sType = VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO;
		//allocInfo.allocationSize = memRequirements.size;
		//allocInfo.memoryTypeIndex = findMemoryType(memRequirements.memoryTypeBits, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT);

		//if (vkAllocateMemory(device, &allocInfo, nullptr, &vertexBufferMemory) != VK_SUCCESS) {
		//	throw std::runtime_error("failed to allocate vertex buffer memory!");
		//}
		//vkBindBufferMemory(device, vertexBuffer, vertexBufferMemory, 0);
		//or
		//[1]
		//VkDeviceSize bufferSize = sizeof(vertices[0]) * vertices.size();
		//createBuffer(bufferSize, VK_BUFFER_USAGE_VERTEX_BUFFER_BIT,
		//	VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT |
		//	VK_MEMORY_PROPERTY_HOST_COHERENT_BIT, vertexBuffer,
		//	vertexBufferMemory);

		//void* data;
		//vkMapMemory(device, vertexBufferMemory, 0, bufferSize, 0, &data);
		//memcpy(data, vertices.data(), (size_t)bufferSize);
		//vkUnmapMemory(device, vertexBufferMemory);
		//or
		//[2]
		VkDeviceSize bufferSize = sizeof(vertices[0]) * vertices.size();
		VkBuffer stagingBuffer;
		VkDeviceMemory stagingBufferMemory;
		createBuffer(bufferSize, VK_BUFFER_USAGE_TRANSFER_SRC_BIT, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT |
			VK_MEMORY_PROPERTY_HOST_COHERENT_BIT, stagingBuffer, stagingBufferMemory);

		void* data;
		vkMapMemory(device, stagingBufferMemory, 0, bufferSize, 0, &data);
		memcpy(data, vertices.data(), (size_t)bufferSize);
		vkUnmapMemory(device, stagingBufferMemory);
		
		createBuffer(bufferSize, VK_BUFFER_USAGE_TRANSFER_DST_BIT | VK_BUFFER_USAGE_VERTEX_BUFFER_BIT,
				VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT, vertexBuffer, vertexBufferMemory);
		//[3]
		copyBuffer(stagingBuffer, vertexBuffer, bufferSize);
		//[3]
		vkDestroyBuffer(device, stagingBuffer, nullptr);
		vkFreeMemory(device, stagingBufferMemory, nullptr);
	}

	uint32_t findMemoryType(uint32_t typeFilter, VkMemoryPropertyFlags properties) {
		VkPhysicalDeviceMemoryProperties memProperties;
		vkGetPhysicalDeviceMemoryProperties(physicalDevice, &memProperties);

		for (uint32_t i = 0; i < memProperties.memoryTypeCount; i++) {
			if ((typeFilter & (1 << i)) && (memProperties.memoryTypes[i].propertyFlags & properties) == properties) {
				return i;
			}
		}

		throw std::runtime_error("failed to find suitable memory type!");

		
	}
	//[1]
	void createBuffer(VkDeviceSize size, VkBufferUsageFlags usage,
			VkMemoryPropertyFlags properties, VkBuffer& buffer,
				VkDeviceMemory& bufferMemory) {
		VkBufferCreateInfo bufferInfo = {};
		bufferInfo.sType = VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO;
		bufferInfo.size = size;
		bufferInfo.usage = usage;
		bufferInfo.sharingMode = VK_SHARING_MODE_EXCLUSIVE;

		if (vkCreateBuffer(device, &bufferInfo, nullptr, &buffer) !=
			VK_SUCCESS) {
			throw std::runtime_error("failed to create buffer!");
		}

		VkMemoryRequirements memRequirements;
		vkGetBufferMemoryRequirements(device, buffer, &memRequirements);

		VkMemoryAllocateInfo allocInfo = {};
		allocInfo.sType = VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO;
		allocInfo.allocationSize = memRequirements.size;
		allocInfo.memoryTypeIndex =
			findMemoryType(memRequirements.memoryTypeBits, properties);

		if (vkAllocateMemory(device, &allocInfo, nullptr, &bufferMemory)
			!= VK_SUCCESS) {
			throw std::runtime_error("failed to allocate buffer memory!");
		}

		vkBindBufferMemory(device, buffer, bufferMemory, 0);

	}
	//[3]将資料從一個緩沖區複制到另一個緩沖區
	void copyBuffer(VkBuffer srcBuffer, VkBuffer dstBuffer, VkDeviceSize size) {

		VkCommandBufferAllocateInfo allocInfo = {};
		allocInfo.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_ALLOCATE_INFO;
		allocInfo.level = VK_COMMAND_BUFFER_LEVEL_PRIMARY;
		allocInfo.commandPool = commandPool;
		allocInfo.commandBufferCount = 1;

		VkCommandBuffer commandBuffer;
		vkAllocateCommandBuffers(device, &allocInfo, &commandBuffer);

		//[3]recording the command buffer
		VkCommandBufferBeginInfo beginInfo = {};
		beginInfo.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_BEGIN_INFO;
		//[3]使用指令緩沖區一次并等待從函數傳回,直到複制操作完成執行。
		beginInfo.flags = VK_COMMAND_BUFFER_USAGE_ONE_TIME_SUBMIT_BIT;
		vkBeginCommandBuffer(commandBuffer, &beginInfo);

		//[3]與 vkMapMemory 指令不同,無法指定 VK_WHOLE_SIZE。
		VkBufferCopy copyRegion = {};
		copyRegion.srcOffset = 0; 
		copyRegion.dstOffset = 0;
		copyRegion.size = size;
		vkCmdCopyBuffer(commandBuffer, srcBuffer, dstBuffer, 1, &copyRegion);

		vkEndCommandBuffer(commandBuffer);

		//[3]執行指令緩沖區以完成傳輸
		VkSubmitInfo submitInfo = {};
		submitInfo.sType = VK_STRUCTURE_TYPE_SUBMIT_INFO;
		submitInfo.commandBufferCount = 1;
		submitInfo.pCommandBuffers = &commandBuffer;

		vkQueueSubmit(graphicsQueue, 1, &submitInfo, VK_NULL_HANDLE);
		//[3]與繪制指令不同,沒有需要等待的事件。 
		//[3]還有兩種可能的方法可以等待傳輸完成。 
		//[3]可以使用fence,并使用 vkWaitForFences 等待,
		//[3]或使用 vkQueueWaitIdle 等待傳輸隊列變為空閑。
		//[3]fence允許同時安排多個傳輸并等待所有傳輸完成,而不是一次執行一個。 
		vkQueueWaitIdle(graphicsQueue);

		//[3]清除傳輸操作的指令緩沖區
		vkFreeCommandBuffers(device, commandPool, 1, &commandBuffer);



	}
	//[4]
	void createIndexBuffer() {
	
		VkDeviceSize bufferSize = sizeof(indices[0]) * indices.size();

		VkBuffer stagingBuffer;
		VkDeviceMemory stagingBufferMemory;
		createBuffer(bufferSize, VK_BUFFER_USAGE_TRANSFER_SRC_BIT, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT |
			VK_MEMORY_PROPERTY_HOST_COHERENT_BIT, stagingBuffer, stagingBufferMemory);

		void* data;
		vkMapMemory(device, stagingBufferMemory, 0, bufferSize, 0, &data);

		memcpy(data, indices.data(), (size_t)bufferSize);
		vkUnmapMemory(device, stagingBufferMemory);

		createBuffer(bufferSize, VK_BUFFER_USAGE_TRANSFER_DST_BIT | VK_BUFFER_USAGE_INDEX_BUFFER_BIT,
			VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT, indexBuffer, indexBufferMemory);

		copyBuffer(stagingBuffer, indexBuffer, bufferSize);

		vkDestroyBuffer(device, stagingBuffer, nullptr);
		vkFreeMemory(device, stagingBufferMemory, nullptr);
	}
};


int main() {
	Application app;
	try {
		app.run();
	}
	catch (const std::exception& e) {
		std::cerr << e.what() << std::endl;
		return EXIT_FAILURE;
	}

	return EXIT_FAILURE;
}