import dgl
import dgl.function as fn
import torch as th
import torch.nn as nn
import torch.nn.functional as F
from dgl import DGLGraph
gcn_msg=fn.copy_src(src="h",out="m")
gcn_reduce=fn.sum(msg="m",out="h")#聚合鄰居節點的特征
#定義節點的UDF apply_nodes 他是一個完全連接配接層
class NodeApplyModule(nn.Module):
#初始化
def __init__(self,in_feats,out_feats,activation):
super(NodeApplyModule,self).__init__()
self.linear=nn.Linear(in_feats,out_feats)
self.activation=activation
#前向傳播
def forward(self,node):
h=self.linear(node.data["h"])
if self.activation is not None:
h=self.activation(h)
return {"h":h}
#定義GCN子產品 GCN子產品的本質是在所有節點上執行消息傳遞 然後再調用NOdeApplyModule全連接配接層
class GCN(nn.Module):
#初始化
def __init__(self,in_feats,out_feats,activation):
super(GCN,self).__init__()
#調用全連接配接層子產品
self.apply_mod=NodeApplyModule(in_feats,out_feats,activation)
#前向傳播
def forward(self,g,feature):
g.ndata["h"]=feature#feature應該對應的整個圖的特征矩陣
g.update_all(gcn_msg,gcn_reduce)
g.apply_nodes(func=self.apply_mod)#将更新操作應用到節點上
return g.ndata.pop("h")
#利用cora資料集搭建網絡然後訓練
class Net(nn.Module):
#初始化網絡參數
def __init__(self):
super(Net,self).__init__()
self.gcn1=GCN(1433,16,F.relu)#第一層GCN
self.gcn2=GCN(16,7,None)
#前向傳播
def forward(self,g,features):
x=self.gcn1(g,features)
x=self.gcn2(g,x)
return x
net=Net()
net
#使用DGL内置子產品加載cora資料集
from dgl.data import citation_graph as citegrh
import networkx as nx
def load_cora_data():
data = citegrh.load_cora()#加載資料集
features=th. FloatTensor(data.features)#特征向量 張量的形式
labels=th.LongTensor(data.labels)#所屬類别
train_mask=th.BoolTensor(data.train_mask)#那些參與訓練
test_mask=th.BoolTensor(data.test_mask)#哪些是測試集
g=data.graph
g.remove_edges_from(nx.selfloop_edges(g))#删除自循環的邊
g = DGLGraph(g)
g.add_edges(g.nodes(), g.nodes())
return g, features, labels, train_mask, test_mask
g, features, labels, train_mask, test_mask=load_cora_data()
import matplotlib.pyplot as plt
nx.draw(g.to_networkx(),node_size=50,with_labels=True)
plt.show()
#測試模型
def evaluate(model, g, features, labels, mask):
model.eval()#會通知所有圖層您處于評估模式
with th.no_grad():
logits = model(g, features)
logits = logits[mask]
labels = labels[mask]
_, indices = th.max(logits, dim=1)
correct = th.sum(indices == labels)
return correct.item() * 1.0 / len(labels)
#訓練網絡
import time
import numpy as np
g, features, labels, train_mask, test_mask = load_cora_data()
#定義優化器
optimizer=th.optim.Adam(net.parameters(),lr=1e-3)
dur=[]#時間
for epoch in range(100):
print(epoch)
if epoch>=3:
t0=time.time()
net.train()
logits = net(g, features)
logp = F.log_softmax(logits, 1)
loss = F.nll_loss(logp[train_mask], labels[train_mask])
optimizer.zero_grad()
loss.backward()
optimizer.step()
if epoch >=3:
dur.append(time.time() - t0)
acc = evaluate(net, g, features, labels, test_mask)
print("Epoch {:05d} | Loss {:.4f} | Test Acc {:.4f} | Time(s) {:.4f}".format(
epoch, loss.item(), acc, np.mean(dur)))
DGL系列之(二):使用DGL實作GCN