原題如下:
Given a sorted array of integers, find the starting and ending position of a given target value.
Your algorithm's runtime complexity must be in the order of O(log n).
If the target is not found in the array, return
[-1, -1]
.
For example,
Given
[5, 7, 7, 8, 8, 10]
and target value 8,
return
[3, 4]
.
思路:這道題很容易想到的思路是利用二分查找找到target,然後以找到的target為中心向前向後周遊,這種方法由于還需要有一個周遊的過程,是以在最壞情況下的時間複雜度是O(n)。
vector<int> searchRange(int A[], int n, int target) {
int low = 0;
int high = n - 1;
vector<int>v;
int index = binarySearch(A,low,high,target);
//printf("%d\n",index);
if(index == -1){
v.push_back(-1);
v.push_back(-1);
return v;
}
low = index;
high = index;
while( low >= 0 && A[low] == target )
low--;
while(high < n && A[high] == target)
high++;
v.push_back(++low);
v.push_back(--high);
return v;
}
int binarySearch(int A[],int low,int high,int target){
if(low <= high){
int mid= (low + high)/2;
if(A[mid] == target)
return mid;
if(A[mid] > target)
return binarySearch(A,low,mid - 1,target);
else
return binarySearch(A,mid + 1,high,target);
}
else
return -1;
}
另一種思路是直接利用二分查找尋找target的下限和上限,尋找下限的原則是不錯過第一個相等的元素,尋找上限的原則是不錯過最後一個相等的元素,這裡邊有一個問題是mid在取值時更加靠近low,是以尋找上限與尋找下限時指針的移動稍有不同,這點兒需要注意。
vector<int> searchRange(int A[], int n, int target) {
int low = 0;
int high = n - 1;
//找下限
vector<int>v(2,-1);
while(low < high){
int mid = (low + high) / 2;
if(A[mid] < target) //原則是不能錯過最前一個相等元素
low = mid + 1;
else
high = mid;
}
if(A[low] != target)
return v;
v[0] = low;
//找上限
high = n - 1;
while(low < high){
int mid = (low + high) / 2;
if(A[mid] > target) //原則是不能錯過最後一個相等元素
high = mid - 1;
else
low = mid + 1;//因為low之後的元素不比target小,是以此處是A[low] = target,但仍需向前移動,否則容易陷入死循環。
}
if(A[high] == target)
v[1] = high;
else
v[1] = high - 1;
return v;
}