天天看點

YOLO系列--理論部分

Yolov1論文理論部分:https://blog.csdn.net/u011974639/article/details/78208773

Yolov2論文理論部分:https://blog.csdn.net/u011974639/article/details/78208896

https://blog.csdn.net/litt1e/article/details/88852745

K-means聚類:(使得anchor box無限靠近bbox)

https://blog.csdn.net/xiaomifanhxx/article/details/81215051?ops_request_misc=&request_id=&biz_id=102&utm_term=yolov2%20kmeans&utm_medium=distribute.pc_search_result.none-task-blog-2allsobaiduweb~default-1-81215051

Yolov3論文理論部分:https://blog.csdn.net/litt1e/article/details/88907542

FPN解析:(提高小目标檢測精度)https://blog.csdn.net/u011974639/article/details/78244743

Tips:

①這裡注意bounding box 與anchor box的差別:

Bounding box它輸出的是框的位置(中心坐标與寬高), confidence以及N個類别。anchor box隻是一個尺度即隻有寬高。

②softmax用來處理分類問題,logistic回歸問題用來處理是和不是的問題。yolov3将logistic替換原先的softmax,就是為了排除例如檢測出男人也屬于人這一類,周遊所有類别(是或不是),選取大于門檻值的即可。

https://blog.csdn.net/weixin_43384257/article/details/100974776?ops_request_misc=%257B%2522request%255Fid%2522%253A%2522158977991219195265912634%2522%252C%2522scm%2522%253A%252220140713.130102334.pc%255Fall.57693%2522%257D&request_id=158977991219195265912634&biz_id=0&utm_medium=distribute.pc_search_result.none-task-blog-2allfirst_rank_v2~rank_v25-1-100974776.nonecase&utm_term=yolo%E7%BD%AE%E4%BF%A1%E5%BA%A6confidence

繼續閱讀