天天看點

java 位元組碼指令

位元組碼格式

位元組碼是JVM的機器語言。JVM加載類檔案時,對類中的每個方法,它都會得到一個位元組碼流。這些位元組碼流儲存在JVM的方法區中。在程式運作過程中,當一個方法被調用時,它的位元組碼流就會被執行。根據特定JVM設計者的選擇,它們可以通過解釋的方式,即時編譯(Just-in-time compilation)的方式或其他技術的方式被執行。

方法的位元組碼流就是JVM的指令(instruction)序列。每條指令包含一個單位元組的操作碼(opcode)和0個或多個操作數(operand)。操作碼指明要執行的操作。如果JVM在執行操作前,需要更多的資訊,這些資訊會以0個或多個操作數的方式,緊跟在操作碼的後面。

每種類型的操作碼都有一個助記符(mnemonic)。類似典型的彙編語言風格,​​Java​​位元組碼流可以用它們的助記符和緊跟在後面的操作數來表示。例如,下面的位元組碼流可以分解成多個助記符的形式。

  1. 03 3b 

    84 

    00 

    01 1a 

    05 

    68

  2. // 分解後:
  3. 03
  4. istore_0      // 3b
  5. 0, 

    1     // 

    84 

    00 

    01

  6. iload_0       // 1a
  7. 05
  8. 68
  9. istore_0      // 3b
  10. goto 

    -7

位元組碼指令集被設計的很緊湊。除了處理跳表的2條指令以外,所有的指令都以位元組邊界對齊。操作碼的總數很少,一個位元組就能搞定。這最小化了JVM加載前,通過網絡傳輸的類檔案的大小;也使得JVM可以維持很小的實作。

JVM中,所有的計算都是圍繞棧(stack)而展開的。因為JVM沒有存儲任意數值的寄存器(register),所有的操作數在計算開始之前,都必須先壓入棧中。是以,位元組碼指令主要是用來操作棧的。例如,在上面的位元組碼序列中,通過iload_0先把本地變量(local variable)入棧,然後用iconst_2把數字2入棧的方式,來計算本地變量乘以2。兩個整數都入棧之後,imul指令有效的從棧中彈出它們,然後做乘法,最後把運算結果壓入棧中。istore_0指令把結果從棧頂彈出,儲存回本地變量。JVM被設計成基于棧,而不是寄存器的機器,這使得它在如80486寄存器​​架構​​不佳的處理器上,也能被高效的實作。

原始類型(primitive types)

JVM支援7種原始資料類型。Java程式員可以聲明和使用這些資料類型的變量,而Java位元組碼,處理這些資料類型。下表列出了這7種原始資料類型:

類型 定義
byte 單位元組有符号二進制補碼整數
short 2位元組有符号二進制補碼整數
int 4位元組有符号二進制補碼整數
long 8位元組有符号二進制補碼整數
float 4位元組IEEE 754單精度浮點數
double 8位元組IEEE 754雙精度浮點數
char 2位元組無符号Unicode字元

原始資料類型以操作數的方式出現在位元組碼流中。所有長度超過1位元組的原始類型,都以大端(big-endian)的方式儲存在位元組碼流中,這意味着高位位元組出現在低位位元組之前。例如,為了把常量值256(0x0100)壓入棧中,你可以用sipush操作碼,後跟一個短操作數。短操作數會以“01 00”的方式出現在位元組碼流中,因為JVM是大端的。如果JVM是小端(little-endian)的,短操作數将會是“00 01”。

  1. 17 

    01 

    00

  2. // Dissassembly:
  3. 256;      // 

    17 

    01 

    00

把常量(constants)壓入棧中

很多操作碼都可以把常量壓入棧中。操作碼以3中不同的方式指定入棧的常量值:由操作碼隐式指明,作為操作數跟在操作碼之後,或者從常量池(constant pool)中擷取。

有些操作碼本身就指明了要入棧的資料類型和常量數值。例如,iconst_1告訴JVM把整數1壓入棧中。這種操作碼,是為不同類型而經常入棧的數值而定義的。它們在位元組碼流中隻占用1個位元組,增進了位元組碼的執行效率,并減小了位元組碼流的大小。下表列出了int型和float型的操作碼:

操作碼 操作數 描述
iconst_m1 (none) pushes int -1 onto the stack
iconst_0 (none) pushes int 0 onto the stack
iconst_1 (none) pushes int 1 onto the stack
iconst_2 (none) pushes int 2 onto the stack
iconst_3 (none) pushes int 3 onto the stack
iconst_4 (none) pushes int 4 onto the stack
iconst_5 (none) pushes int 5 onto the stack
fconst_0 (none) pushes float 0 onto the stack
fconst_1 (none) pushes float 1 onto the stack
fconst_2 (none) pushes float 2 onto the stack

下面列出的操作碼處理的int型和float型都是32位的值。Java棧單元(slot)是32位寬的,是以,每次一個int數和float數入棧,它都占用一個單元。下表列出的操作碼處理long型和double型。long型和double型的數值占用64位。每次一個long數或double數被壓入棧中,它都占用2個棧單元。下面的表格,列出了隐含處理long型和double型的操作碼

操作碼 操作數 描述
lconst_0 (none) pushes long 0 onto the stack
lconst_1 (none) pushes long 1 onto the stack
dconst_0 (none) pushes double 0 onto the stack
dconst_1 (none) pushes double 1 onto the stack

另外還有一個隐含入棧常量值的操作碼,aconst_null,它把空對象(null object)的引用(reference)壓入棧中。對象引用的格式取決于JVM實作。對象引用指向垃圾收集堆(garbage-collected heap)中的對象。空對象引用,意味着一個變量目前沒有指向任何合法對象。aconst_null操作碼用在給引用變量賦null值的時候。

操作碼 操作數 描述
aconst_null (none) pushes a null object reference onto the stack

有2個操作碼需要緊跟一個操作數來指明入棧的常量值。下表列出的操作碼,用來把合法的byte型和short型的常量值壓入棧中。byte型或short型的值在入棧之前,先被擴充成int型的值,因為棧單元是32位寬的。對byte型和short型的操作,實際上是基于它們擴充後的int型值的。

操作碼 操作數 描述
bipush byte1 expands byte1 (a byte type) to an int and pushes it onto the stack
sipush byte1, byte2 expands byte1, byte2 (a short type) to an int and pushes it onto the stack

有3個操作碼把常量池中的常量值壓入棧中。所有和類關聯的常量,如final變量,都被儲存在類的常量池中。把常量池中的常量壓入棧中的操作碼,都有一個操作數,它表示需要入棧的常量在常量池中的索引。JVM會根據索引查找常量,确定它的類型,并把它壓入棧中。

在位元組碼流中,常量池索引(constant pool index)是一個緊跟在操作碼後的無符号值。操作碼lcd1和lcd2把32位的項壓入棧中,如int或float。兩者的差別在于lcd1隻适用于1-255的常量池索引位,因為它的索引隻有1個位元組。(常量池0号位未被使用。)lcd2的索引有2個位元組,是以它可以适用于常量池的任意位置。lcd2w也有一個2位元組的索引,它被用來訓示任意含有64位的long或double型資料的常量池位置。下表列出了把常量池中的常量壓入棧中的操作碼:

操作碼 操作數 描述
ldc1 indexbyte1 pushes 32-bit constant_pool entry specified by indexbyte1 onto the stack
ldc2 indexbyte1, indexbyte2 pushes 32-bit constant_pool entry specified by indexbyte1, indexbyte2 onto the stack
ldc2w indexbyte1, indexbyte2 pushes 64-bit constant_pool entry specified by indexbyte1,indexbyte2 onto the stack

把局部變量(local variables)壓入棧中

局部變量儲存在棧幀的一個特殊區域中。棧幀是目前執行方法正在使用的棧區。每個棧幀包含3個部分:本地變量區,執行環境和操作數棧區。把本地變量入棧實際上包含了把數值從棧幀的本地變量區移動到操作數棧區。操作數棧區總是在棧的頂部,是以,把一個值壓到目前棧幀的操作數棧區頂部,跟壓到整個JVM棧的頂部是一個意思。

Java棧是一個先進後出(LIFO)的32位寬的棧。所有的本地變量至少占用32位,因為棧中的每個單元都是32位寬的。像long和double類型的64位的本地變量會占用2個棧單元。byte和short型的本地變量會當做int型來存儲,但隻擁有較小類型的合法值。例如,表示byte型的int型本地變量取值範圍總是-128到127。

每個本地變量都有一個唯一索引。方法棧幀的本地變量區,可以當成是一個擁有32位寬的元素的數組,每個元素都可以用數組索引來尋址。long和double型的占用2個單元的本地變量,且用低位元素的索引尋址。例如,對一個占用2單元和3單元的double數值,會用索引2來引用。

有一些操作碼可以把int和float型本地變量壓入操作數棧。部分操作碼,定義成隐含常用本地變量位址的引用。例如,iload_0加載處在位置0的int型本地變量。其他本地變量,通過操作碼後跟一個位元組的本地變量索引的方式壓入棧中。iload指令就是這種操作碼類型的一個例子。iload後的一個位元組被解釋成指向本地變量的8位無符号索引。

類似iload所用的8位無符号本地變量索引,限制了一個方法最多隻能有256個本地變量。有一個單獨的wide指令可以把8位索引擴充為16位索引,則使得本地變量數的上限提高到64k個。操作碼wide隻有1個操作數。wide和它的操作數,出現在像iload之類的有一個8位無符号本地變量索引的指令之前。JVM會把wide的操作數和iload的操作數合并為一個16位的無符号本地變量索引。

下表列出了把int和float型本地變量壓入棧中的操作碼:

操作碼 操作數 描述
iload vindex pushes int from local variable position vindex
iload_0 (none) pushes int from local variable position zero
iload_1 (none) pushes int from local variable position one
iload_2 (none) pushes int from local variable position two
iload_3 (none) pushes int from local variable position three
fload vindex pushes float from local variable position vindex
fload_0 (none) pushes float from local variable position zero
fload_1 (none) pushes float from local variable position one
fload_2 (none) pushes float from local variable position two
fload_3 (none) pushes float from local variable position three

接下來的這張表,列出了把long和double型本地變量壓入棧中的指令。這些指令把64位的數從棧幀的本地變量區移動到操作數區。

操作碼 操作數 描述
lload vindex pushes long from local variable positions vindex and (vindex + 1)
lload_0 (none) pushes long from local variable positions zero and one
lload_1 (none) pushes long from local variable positions one and two
lload_2 (none) pushes long from local variable positions two and three
lload_3 (none) pushes long from local variable positions three and four
dload vindex pushes double from local variable positions vindex and (vindex + 1)
dload_0 (none) pushes double from local variable positions zero and one
dload_1 (none) pushes double from local variable positions one and two
dload_2 (none) pushes double from local variable positions two and three
dload_3 (none) pushes double from local variable positions three and four

最後一組操作碼,把32位的對象引用從棧幀的本地變量區移動到操作數區。如下表:

操作碼 操作數 描述
aload vindex pushes object reference from local variable position vindex
aload_0 (none) pushes object reference from local variable position zero
aload_1 (none) pushes object reference from local variable position one
aload_2 (none) pushes object reference from local variable position two
aload_3 (none) pushes object reference from local variable position three

彈出到本地變量

每一個将局部變量壓入棧中的操作碼,都有一個對應的負責彈出棧頂元素到本地變量中的操作碼。這些操作碼的名字可以通過替換入棧操作碼名中的“load”為“store”得到。下表列出了将int和float型數值彈出操作數棧到本地變量中的操作碼。這些操作碼将一個32位的值從棧頂移動到本地變量中。

操作碼 操作數 描述
istore vindex pops int to local variable position vindex
istore_0 (none) pops int to local variable position zero
istore_1 (none) pops int to local variable position one
istore_2 (none) pops int to local variable position two
istore_3 (none) pops int to local variable position three
fstore vindex pops float to local variable position vindex
fstore_0 (none) pops float to local variable position zero
fstore_1 (none) pops float to local variable position one
fstore_2 (none) pops float to local variable position two
fstore_3 (none) pops float to local variable position three

下一張表中,展示了負責将long和double類型數值出棧并存到局部變量的位元組碼指令,這些指令将64位的值從操作數棧頂移動到本地變量中。

操作碼 操作數 描述
lstore vindex pops long to local variable positions vindex and (vindex + 1)
lstore_0 (none) pops long to local variable positions zero and one
lstore_1 (none) pops long to local variable positions one and two
lstore_2 (none) pops long to local variable positions two and three
lstore_3 (none) pops long to local variable positions three and four
dstore vindex pops double to local variable positions vindex and (vindex + 1)
dstore_0 (none) pops double to local variable positions zero and one
dstore_1 (none) pops double to local variable positions one and two
dstore_2 (none) pops double to local variable positions two and three
dstore_3 (none) pops double to local variable positions three and four

最後一組操作碼,負責将32位的對象引用從操作數棧頂移動到本地變量中。

操作碼 操作數 描述
astore vindex pops object reference to local variable position vindex
astore_0 (none) pops object reference to local variable position zero
astore_1 (none) pops object reference to local variable position one
astore_2 (none) pops object reference to local variable position two
astore_3 (none) pops object reference to local variable position three

類型轉換

JVM中有一些操作碼用來将一種基本類型的數值轉換成另外一種。位元組碼流中的轉換操作碼後面不跟操作數,被轉換的值取自棧頂。JVM彈出棧頂的值,轉換後再将結果壓入棧中。下表列出了在int,long,float和double間轉換的操作碼。這四種類型組合的每一個可能的轉換,都有一個對應的操作碼。

操作碼 操作數 描述
i2l (none) converts int to long
i2f (none) converts int to float
i2d (none) converts int to double
l2i (none) converts long to int
l2f (none) converts long to float
l2d (none) converts long to double
f2i (none) converts float to int
f2l (none) converts float to long
f2d (none) converts float to double
d2i (none) converts double to int
d2l (none) converts double to long
d2f (none) converts double to float

下表列出了将int型轉換為更小類型的操作碼。不存在直接将long,float,double型轉換為比int型小的類型的操作碼。是以,像float到byte這樣的轉換,需要兩步。第一步,f2i将float轉換為int,第二步,int2byte操作碼将int轉換為byte。

操作碼 操作數 描述
int2byte (none) converts int to byte
int2char (none) converts int to char
int2short (none) converts int to short

雖然存在将int轉換為更小類型(byte,short,char)的操作碼,但是不存在反向轉換的操作碼。這是因為byte,short和char型的數值在入棧之前會轉換成int型。byte,short和char型數值的算術運算,首先要将這些類型的值轉為int,然後執行算術運算,最後得到int型結果。也就是說,如果兩個byte型的數相加,會得到一個int型的結果,如果你想要byte型的結果,你必須顯式地将int類型的結果轉換為byte類型的值。例如,下面的代碼編譯出錯:

  1. class BadArithmetic 

    {

  2. byte addOneAndOne

    (

    {

  3. byte a = 

    1

    ;

  4. byte b = 

    1

    ;

  5. byte c = a + b

    ;

  6. return c

    ;

  7. }
  8. }

javac會對上面的代碼給出如下錯誤:

1. (
    7
    ): Incompatible type 
    for
2. Explicit cast needed to convert int to byte.
3. byte c = a + b;
4. ^      

Java程式員必須顯式的把a + b的結果轉換為byte,這樣才能通過編譯。

1. class GoodArithmetic 
    {
2. byte addOneAndOne
    (
    ) 
    {
3. byte a = 
    1
    ;
4. byte b = 
    1
    ;
5. byte c = 
    (
    byte
    ) 
    (a + b
    )
    ;
6. return c
    ;
7. }
8. }      

這樣,javac會很高興的生成GoodArithmetic.class檔案,它包含如下的addOneAndOne()方法的位元組碼序列:

1. 1.
2. 1, which is a: byte a = 
    1;
3. 1
4. 2, which is b: byte b = 
    1;
5. (a is already stored as an int 
    in local variable 
    1
    ).
6. (b is already stored as an int 
    in local variable 
    2
    ).
7. (a + b
    ), an int.
8. (result still occupies 
    32 bits
    ).
9. 3, which is byte c: byte c = 
    (byte
    ) 
    (a + b
    );
10. iload_3   // Push the value of c so it can be returned.
11. ireturn   // Proudly return the result of the addition: return c;      

本文譯自:​​Bytecode basics​​

轉載自:​​http://iofree.cc/%E5%AD%97%E8%8A%82%E7%A0%81%E5%9F%BA%E7%A1%80%EF%BC%9Ajvm%E5%AD%97%E8%8A%82%E7%A0%81%E5%88%9D%E6%8E%A2/​​

Mnemonic

Opcode

(in hex)

Other bytes

Stack

[before]→[after]

Description
aaload 32 arrayref, index → value load onto the stack a reference from an array
aastore 53 arrayref, index, value → store into a reference in an array
aconst_null 01 → null push a null reference onto the stack
aload 19 1: index → objectref load a reference onto the stack from a local variable #index
aload_0 2a → objectref load a reference onto the stack from local variable 0
aload_1 2b → objectref load a reference onto the stack from local variable 1
aload_2 2c → objectref load a reference onto the stack from local variable 2
aload_3 2d → objectref load a reference onto the stack from local variable 3
anewarray bd 2: indexbyte1, indexbyte2 count → arrayref create a new array of references of length count and component type identified by the class referenceindex (indexbyte1 << 8 + indexbyte2) in the constant pool
areturn b0 objectref → [empty] return a reference from a method
arraylength be arrayref → length get the length of an array
astore 3a 1: index objectref → store a reference into a local variable #index
astore_0 4b objectref → store a reference into local variable 0
astore_1 4c objectref → store a reference into local variable 1
astore_2 4d objectref → store a reference into local variable 2
astore_3 4e objectref → store a reference into local variable 3
athrow bf objectref → [empty], objectref throws an error or exception (notice that the rest of the stack is cleared, leaving only a reference to the Throwable)
baload 33 arrayref, index → value load a byte or Boolean value from an array
bastore 54 arrayref, index, value → store a byte or Boolean value into an array
bipush 10 1: byte → value push a byte onto the stack as an integer value
breakpoint ca reserved for breakpoints in Java debuggers; should not appear in any class file
caload 34 arrayref, index → value load a char from an array
castore 55 arrayref, index, value → store a char into an array
checkcast c0 2: indexbyte1, indexbyte2 objectref → objectref checks whether an objectref is of a certain type, the class reference of which is in the constant pool at index (indexbyte1 << 8 + indexbyte2)
d2f 90 value → result convert a double to a float
d2i 8e value → result convert a double to an int
d2l 8f value → result convert a double to a long
dadd 63 value1, value2 → result add two doubles
daload 31 arrayref, index → value load a double from an array
dastore 52 arrayref, index, value → store a double into an array
dcmpg 98 value1, value2 → result compare two doubles
dcmpl 97 value1, value2 → result compare two doubles
dconst_0 0e → 0.0 push the constant 0.0 onto the stack
dconst_1 0f → 1.0 push the constant 1.0 onto the stack
ddiv 6f value1, value2 → result divide two doubles
dload 18 1: index → value load a double value from a local variable #index
dload_0 26 → value load a double from local variable 0
dload_1 27 → value load a double from local variable 1
dload_2 28 → value load a double from local variable 2
dload_3 29 → value load a double from local variable 3
dmul 6b value1, value2 → result multiply two doubles
dneg 77 value → result negate a double
drem 73 value1, value2 → result get the remainder from a division between two doubles
dreturn af value → [empty] return a double from a method
dstore 39 1: index value → store a double value into a local variable #index
dstore_0 47 value → store a double into local variable 0
dstore_1 48 value → store a double into local variable 1
dstore_2 49 value → store a double into local variable 2
dstore_3 4a value → store a double into local variable 3
dsub 67 value1, value2 → result subtract a double from another
dup 59 value → value, value duplicate the value on top of the stack
dup_x1 5a value2, value1 → value1, value2, value1 insert a copy of the top value into the stack two values from the top. value1 and value2 must not be of the type double or long.
dup_x2 5b value3, value2, value1 → value1, value3, value2, value1 insert a copy of the top value into the stack two (if value2 is double or long it takes up the entry of value3, too) or three values (if value2 is neither double nor long) from the top
dup2 5c {value2, value1} → {value2, value1}, {value2, value1} duplicate top two stack words (two values, if value1 is not double nor long; a single value, if value1 is double or long)
dup2_x1 5d value3, {value2, value1} → {value2, value1}, value3, {value2, value1} duplicate two words and insert beneath third word (see explanation above)
dup2_x2 5e {value4, value3}, {value2, value1} → {value2, value1}, {value4, value3}, {value2, value1} duplicate two words and insert beneath fourth word
f2d 8d value → result convert a float to a double
f2i 8b value → result convert a float to an int
f2l 8c value → result convert a float to a long
fadd 62 value1, value2 → result add two floats
faload 30 arrayref, index → value load a float from an array
fastore 51 arrayref, index, value → store a float in an array
fcmpg 96 value1, value2 → result compare two floats
fcmpl 95 value1, value2 → result compare two floats
fconst_0 0b → 0.0f push 0.0f on the stack
fconst_1 0c → 1.0f push 1.0f on the stack
fconst_2 0d → 2.0f push 2.0f on the stack
fdiv 6e value1, value2 → result divide two floats
fload 17 1: index → value load a float value from a local variable #index
fload_0 22 → value load a float value from local variable 0
fload_1 23 → value load a float value from local variable 1
fload_2 24 → value load a float value from local variable 2
fload_3 25 → value load a float value from local variable 3
fmul 6a value1, value2 → result multiply two floats
fneg 76 value → result negate a float
frem 72 value1, value2 → result get the remainder from a division between two floats
freturn ae value → [empty] return a float
fstore 38 1: index value → store a float value into a local variable #index
fstore_0 43 value → store a float value into local variable 0
fstore_1 44 value → store a float value into local variable 1
fstore_2 45 value → store a float value into local variable 2
fstore_3 46 value → store a float value into local variable 3
fsub 66 value1, value2 → result subtract two floats
getfield b4 2: index1, index2 objectref → value get a field value of an object objectref, where the field is identified by field reference in the constant pool index (index1 << 8 + index2)
getstatic b2 2: index1, index2 → value get a static field value of a class, where the field is identified by field reference in the constant pool index (index1 << 8 + index2)
goto a7 2: branchbyte1, branchbyte2 [no change] goes to another instruction at branchoffset (signed short constructed from unsigned bytes branchbyte1 << 8 + branchbyte2)
goto_w c8 4: branchbyte1, branchbyte2, branchbyte3, branchbyte4 [no change] goes to another instruction at branchoffset (signed int constructed from unsigned bytes branchbyte1 << 24 + branchbyte2 << 16 + branchbyte3 << 8 + branchbyte4)
i2b 91 value → result convert an int into a byte
i2c 92 value → result convert an int into a character
i2d 87 value → result convert an int into a double
i2f 86 value → result convert an int into a float
i2l 85 value → result convert an int into a long
i2s 93 value → result convert an int into a short
iadd 60 value1, value2 → result add two ints
iaload 2e arrayref, index → value load an int from an array
iand 7e value1, value2 → result perform a bitwise and on two integers
iastore 4f arrayref, index, value → store an int into an array
iconst_m1 02 → -1 load the int value -1 onto the stack
iconst_0 03 → 0 load the int value 0 onto the stack
iconst_1 04 → 1 load the int value 1 onto the stack
iconst_2 05 → 2 load the int value 2 onto the stack
iconst_3 06 → 3 load the int value 3 onto the stack
iconst_4 07 → 4 load the int value 4 onto the stack
iconst_5 08 → 5 load the int value 5 onto the stack
idiv 6c value1, value2 → result divide two integers
if_acmpeq a5 2: branchbyte1, branchbyte2 value1, value2 → if references are equal, branch to instruction at branchoffset (signed short constructed from unsigned bytes branchbyte1 << 8 + branchbyte2)
if_acmpne a6 2: branchbyte1, branchbyte2 value1, value2 → if references are not equal, branch to instruction at branchoffset (signed short constructed from unsigned bytes branchbyte1 << 8 + branchbyte2)
if_icmpeq 9f 2: branchbyte1, branchbyte2 value1, value2 → if ints are equal, branch to instruction at branchoffset (signed short constructed from unsigned bytesbranchbyte1 << 8 + branchbyte2)
if_icmpge a2 2: branchbyte1, branchbyte2 value1, value2 → if value1 is greater than or equal to value2, branch to instruction at branchoffset (signed short constructed from unsigned bytes branchbyte1 << 8 + branchbyte2)
if_icmpgt a3 2: branchbyte1, branchbyte2 value1, value2 → if value1 is greater than value2, branch to instruction at branchoffset (signed short constructed from unsigned bytes branchbyte1 << 8 + branchbyte2)
if_icmple a4 2: branchbyte1, branchbyte2 value1, value2 → if value1 is less than or equal to value2, branch to instruction at branchoffset (signed short constructed from unsigned bytes branchbyte1 << 8 + branchbyte2)
if_icmplt a1 2: branchbyte1, branchbyte2 value1, value2 → if value1 is less than value2, branch to instruction at branchoffset (signed short constructed from unsigned bytes branchbyte1 << 8 + branchbyte2)
if_icmpne a0 2: branchbyte1, branchbyte2 value1, value2 → if ints are not equal, branch to instruction at branchoffset (signed short constructed from unsigned bytes branchbyte1 << 8 + branchbyte2)
ifeq 99 2: branchbyte1, branchbyte2 value → if value is 0, branch to instruction at branchoffset (signed short constructed from unsigned bytesbranchbyte1 << 8 + branchbyte2)
ifge 9c 2: branchbyte1, branchbyte2 value → if value is greater than or equal to 0, branch to instruction at branchoffset (signed short constructed from unsigned bytes branchbyte1 << 8 + branchbyte2)
ifgt 9d 2: branchbyte1, branchbyte2 value → if value is greater than 0, branch to instruction at branchoffset (signed short constructed from unsigned bytes branchbyte1 << 8 + branchbyte2)
ifle 9e 2: branchbyte1, branchbyte2 value → if value is less than or equal to 0, branch to instruction at branchoffset (signed short constructed from unsigned bytes branchbyte1 << 8 + branchbyte2)
iflt 9b 2: branchbyte1, branchbyte2 value → if value is less than 0, branch to instruction at branchoffset (signed short constructed from unsigned bytes branchbyte1 << 8 + branchbyte2)
ifne 9a 2: branchbyte1, branchbyte2 value → if value is not 0, branch to instruction at branchoffset (signed short constructed from unsigned bytesbranchbyte1 << 8 + branchbyte2)
ifnonnull c7 2: branchbyte1, branchbyte2 value → if value is not null, branch to instruction at branchoffset (signed short constructed from unsigned bytes branchbyte1 << 8 + branchbyte2)
ifnull c6 2: branchbyte1, branchbyte2 value → if value is null, branch to instruction at branchoffset (signed short constructed from unsigned bytesbranchbyte1 << 8 + branchbyte2)
iinc 84 2: index, const [No change] increment local variable #index by signed byte const
iload 15 1: index → value load an int value from a local variable #index
iload_0 1a → value load an int value from local variable 0
iload_1 1b → value load an int value from local variable 1
iload_2 1c → value load an int value from local variable 2
iload_3 1d → value load an int value from local variable 3
impdep1 fe reserved for implementation-dependent operations within debuggers; should not appear in any class file
impdep2 ff reserved for implementation-dependent operations within debuggers; should not appear in any class file
imul 68 value1, value2 → result multiply two integers
ineg 74 value → result negate int
instanceof c1 2: indexbyte1, indexbyte2 objectref → result determines if an object objectref is of a given type, identified by class reference index in constant pool (indexbyte1 << 8 + indexbyte2)
invokedynamic ba 4: indexbyte1, indexbyte2, 0, 0 [arg1, [arg2 ...]] → invokes a dynamic method identified by method reference index in constant pool (indexbyte1 << 8 + indexbyte2)
invokeinterface b9 4: indexbyte1, indexbyte2, count, 0 objectref, [arg1, arg2, ...] → invokes an interface method on object objectref, where the interface method is identified by method reference index in constant pool (indexbyte1 << 8 + indexbyte2)
invokespecial b7 2: indexbyte1, indexbyte2 objectref, [arg1, arg2, ...] → invoke instance method on object objectref, where the method is identified by method reference indexin constant pool (indexbyte1 << 8 + indexbyte2)
invokestatic b8 2: indexbyte1, indexbyte2 [arg1, arg2, ...] → invoke a static method, where the method is identified by method reference index in constant pool (indexbyte1 << 8 + indexbyte2)
invokevirtual b6 2: indexbyte1, indexbyte2 objectref, [arg1, arg2, ...] → invoke virtual method on object objectref, where the method is identified by method reference index in constant pool (indexbyte1 << 8 + indexbyte2)
ior 80 value1, value2 → result bitwise int or
irem 70 value1, value2 → result logical int remainder
ireturn ac value → [empty] return an integer from a method
ishl 78 value1, value2 → result int shift left
ishr 7a value1, value2 → result int arithmetic shift right
istore 36 1: index value → store int value into variable #index
istore_0 3b value → store int value into variable 0
istore_1 3c value → store int value into variable 1
istore_2 3d value → store int value into variable 2
istore_3 3e value → store int value into variable 3
isub 64 value1, value2 → result int subtract
iushr 7c value1, value2 → result int logical shift right
ixor 82 value1, value2 → result int xor
jsr a8 2: branchbyte1, branchbyte2 → address jump to subroutine at branchoffset (signed short constructed from unsigned bytes branchbyte1 << 8 + branchbyte2) and place the return address on the stack
jsr_w c9 4: branchbyte1, branchbyte2, branchbyte3, branchbyte4 → address jump to subroutine at branchoffset (signed int constructed from unsigned bytes branchbyte1 << 24 + branchbyte2 << 16 + branchbyte3 << 8 + branchbyte4) and place the return address on the stack
l2d 8a value → result convert a long to a double
l2f 89 value → result convert a long to a float
l2i 88 value → result convert a long to a int
ladd 61 value1, value2 → result add two longs
laload 2f arrayref, index → value load a long from an array
land 7f value1, value2 → result bitwise and of two longs
lastore 50 arrayref, index, value → store a long to an array
lcmp 94 value1, value2 → result compare two longs values
lconst_0 09 → 0L push the long 0 onto the stack
lconst_1 0a → 1L push the long 1 onto the stack
ldc 12 1: index → value push a constant #index from a constant pool (String, int or float) onto the stack
ldc_w 13 2: indexbyte1, indexbyte2 → value push a constant #index from a constant pool (String, int or float) onto the stack (wide index is constructed as indexbyte1 << 8 + indexbyte2)
ldc2_w 14 2: indexbyte1, indexbyte2 → value push a constant #index from a constant pool (double or long) onto the stack (wide index is constructed as indexbyte1 << 8 + indexbyte2)
ldiv 6d value1, value2 → result divide two longs
lload 16 1: index → value load a long value from a local variable #index
lload_0 1e → value load a long value from a local variable 0
lload_1 1f → value load a long value from a local variable 1
lload_2 20 → value load a long value from a local variable 2
lload_3 21 → value load a long value from a local variable 3
lmul 69 value1, value2 → result multiply two longs
lneg 75 value → result negate a long
lookupswitch ab 4+: <0-3 bytes padding>, defaultbyte1, defaultbyte2, defaultbyte3, defaultbyte4, npairs1, npairs2, npairs3, npairs4, match-offset pairs... key → a target address is looked up from a table using a key and execution continues from the instruction at that address
lor 81 value1, value2 → result bitwise or of two longs
lrem 71 value1, value2 → result remainder of division of two longs
lreturn ad value → [empty] return a long value
lshl 79 value1, value2 → result bitwise shift left of a long value1 by value2 positions
lshr 7b value1, value2 → result bitwise shift right of a long value1 by value2 positions
lstore 37 1: index value → store a long value in a local variable #index
lstore_0 3f value → store a long value in a local variable 0
lstore_1 40 value → store a long value in a local variable 1
lstore_2 41 value → store a long value in a local variable 2
lstore_3 42 value → store a long value in a local variable 3
lsub 65 value1, value2 → result subtract two longs
lushr 7d value1, value2 → result bitwise shift right of a long value1 by value2 positions, unsigned
lxor 83 value1, value2 → result bitwise exclusive or of two longs
monitorenter c2 objectref → enter monitor for object ("grab the lock" - start of synchronized() section)
monitorexit c3 objectref → exit monitor for object ("release the lock" - end of synchronized() section)
multianewarray c5 3: indexbyte1, indexbyte2, dimensions count1, [count2,...] → arrayref create a new array of dimensions dimensions with elements of type identified by class reference in constant pool index (indexbyte1 << 8 + indexbyte2); the sizes of each dimension is identified bycount1, [count2, etc.]
new bb 2: indexbyte1, indexbyte2 → objectref create new object of type identified by class reference in constant pool index (indexbyte1 << 8 + indexbyte2)
newarray bc 1: atype count → arrayref create new array with count elements of primitive type identified by atype
nop 00 [No change] perform no operation
pop 57 value → discard the top value on the stack
pop2 58 {value2, value1} → discard the top two values on the stack (or one value, if it is a double or long)
putfield b5 2: indexbyte1, indexbyte2 objectref, value → set field to value in an object objectref, where the field is identified by a field reference index in constant pool (indexbyte1 << 8 + indexbyte2)
putstatic b3 2: indexbyte1, indexbyte2 value → set static field to value in a class, where the field is identified by a field reference index in constant pool (indexbyte1 << 8 + indexbyte2)
ret a9 1: index [No change] continue execution from address taken from a local variable #index (the asymmetry with jsr is intentional)
return b1 → [empty] return void from method
saload 35 arrayref, index → value load short from array
sastore 56 arrayref, index, value → store short to array
sipush 11 2: byte1, byte2 → value push a short onto the stack
swap 5f value2, value1 → value1, value2 swaps two top words on the stack (note that value1 and value2 must not be double or long)
tableswitch aa 4+: [0-3 bytes padding], defaultbyte1, defaultbyte2, defaultbyte3, defaultbyte4, lowbyte1, lowbyte2, lowbyte3, lowbyte4, highbyte1, highbyte2, highbyte3, highbyte4, jump offsets... index → continue execution from an address in the table at offset index
wide c4

3/5: opcode, indexbyte1, indexbyte2

or

iinc, indexbyte1, indexbyte2, countbyte1, countbyte2

[same as for corresponding instructions] execute opcode, where opcode is either iload, fload, aload, lload, dload, istore, fstore, astore, lstore, dstore, or ret, but assume the index is 16 bit; or execute iinc, where the index is 16 bits and the constant to increment by is a signed 16 bit short
(no name) cb-fd these values are currently unassigned for opcodes and are reserved for future use