天天看點

uboot向kernel的傳參機制——bootm與tags

最近閱讀代碼學習了uboot boot kernel的過程以及uboot如何傳參給kernel,記錄下來,與大家共享:

U-boot版本:2014.4

Kernel版本:3.4.55

一 uboot 如何啟動 kernel

1 do_bootm

uboot下使用bootm指令啟動核心鏡像檔案uImage,uImage是在zImage頭添加了64位元組的鏡像資訊供uboot解析使用,具體這64位元組頭的内容,我們在分析bootm指令的時候就會一一說到,那直接來看bootm指令。

在common/cmd_bootm.c中

int do_bootm(cmd_tbl_t *cmdtp, int flag, int argc, char * const argv[])
{
#ifdef CONFIG_NEEDS_MANUAL_RELOC
    static int relocated = 0;

    if (!relocated) {
        int i;

        /* relocate boot function table */
        for (i = 0; i < ARRAY_SIZE(boot_os); i++)
            if (boot_os[i] != NULL)
                boot_os[i] += gd->reloc_off;

        /* relocate names of sub-command table */
        for (i = 0; i < ARRAY_SIZE(cmd_bootm_sub); i++)
            cmd_bootm_sub[i].name += gd->reloc_off;

        relocated = 1;
    }
#endif
    /* determine if we have a sub command */
    argc--; argv++;
    if (argc > 0) {
        char *endp;

        simple_strtoul(argv[0], &endp, 16);
        /* endp pointing to NULL means that argv[0] was just a
         * valid number, pass it along to the normal bootm processing
         *
         * If endp is ':' or '#' assume a FIT identifier so pass
         * along for normal processing.
         *
         * Right now we assume the first arg should never be '-'
         */
        if ((*endp != 0) && (*endp != ':') && (*endp != '#'))
            return do_bootm_subcommand(cmdtp, flag, argc, argv);
    }

    return do_bootm_states(cmdtp, flag, argc, argv, BOOTM_STATE_START |
        BOOTM_STATE_FINDOS | BOOTM_STATE_FINDOTHER |
        BOOTM_STATE_LOADOS |
#if defined(CONFIG_PPC) || defined(CONFIG_MIPS)
        BOOTM_STATE_OS_CMDLINE |
#endif
        BOOTM_STATE_OS_PREP | BOOTM_STATE_OS_FAKE_GO |
        BOOTM_STATE_OS_GO, &images, 1);
}
           

數組boot_os是bootm最後階段啟動kernel時調用的函數數組,CONFIG_NEEDS_MANUAL_RELOC中的代碼含義是将boot_os函數都進行偏移(uboot啟動中會将整個code拷貝到靠近sdram頂端的位置執行),

但是boot_os函數在uboot relocate時已經都拷貝了,是以感覺沒必要在進行relocate。這個宏是以沒有定義,直接走下面。

新版uboot對于boot kernel實作了一個類似狀态機的機制,将整個過程分成很多個階段,uboot将每個階段稱為subcommand,

核心函數是do_bootm_states,需要執行哪個階段,就在do_bootm_states最後一個參數添加那個宏定義,如: BOOTM_STATE_START

do_bootm_subcommand是按照bootm參數來指定運作某一個階段,也就是某一個subcommand

對于正常的uImage,bootm加tftp的load位址就可以。

2 do_bootm_states

這樣會走到最後函數do_bootm_states,那就來看看核心函數do_bootm_states

static int do_bootm_states(cmd_tbl_t *cmdtp, int flag, int argc,
        char * const argv[], int states, bootm_headers_t *images,
        int boot_progress)
{
    boot_os_fn *boot_fn;
    ulong iflag = 0;
    int ret = 0, need_boot_fn;

    images->state |= states;

    /*
     * Work through the states and see how far we get. We stop on
     * any error.
     */
    if (states & BOOTM_STATE_START)
        ret = bootm_start(cmdtp, flag, argc, argv);
           

參數中需要注意bootm_headers_t *images,這個參數用來存儲由image頭64位元組擷取到的的基本資訊。由do_bootm傳來的該參數是images,是一個全局的靜态變量。

首先将states存儲在images的state中,因為states中有BOOTM_STATE_START,調用bootm_start.

3 第一階段:bootm_start

static int bootm_start(cmd_tbl_t *cmdtp, int flag, int argc, char * const argv[])
{
    memset((void *)&images, 0, sizeof(images));
    images.verify = getenv_yesno("verify");

    boot_start_lmb(&images);

    bootstage_mark_name(BOOTSTAGE_ID_BOOTM_START, "bootm_start");
    images.state = BOOTM_STATE_START;

    return 0;
}
           

擷取verify,bootstage_mark_name标志目前狀态為bootm start(bootstage_mark_name可以用于無序列槽調試,在其中實作LED控制)。

boot_start_lmb暫時還沒弄明白,以後再搞清楚。

最後修改images.state為bootm start。

bootm_start主要工作是清空images,标志目前狀态為bootm start。

4 第二階段:bootm_find_os

由bootm_start傳回後,do_bootm傳了BOOTM_STATE_FINDOS,是以進入函數bootm_find_os

static int bootm_find_os(cmd_tbl_t *cmdtp, int flag, int argc,
             char * const argv[])
{
    const void *os_hdr;

    /* get kernel image header, start address and length */
    os_hdr = boot_get_kernel(cmdtp, flag, argc, argv,
            &images, &images.os.image_start, &images.os.image_len);
    if (images.os.image_len == 0) {
        puts("ERROR: can't get kernel image!\n");
        return 1;
    }
           

調用boot_get_kernel,函數較長,首先是擷取image的load位址,如果bootm有參數,就是img_addr,之後如下:

bootstage_mark(BOOTSTAGE_ID_CHECK_MAGIC);

    /* copy from dataflash if needed */
    img_addr = genimg_get_image(img_addr);

    /* check image type, for FIT images get FIT kernel node */
    *os_data = *os_len = 0;
    buf = map_sysmem(img_addr, 0);
           

首先标志目前狀态,然後調用genimg_get_image,該函數會檢查目前的img_addr是否在sdram中,如果是在flash中,則拷貝到sdram中CONFIG_SYS_LOAD_ADDR處,修改img_addr為該位址。

這裡說明我們的image可以在flash中用bootm直接起

map_sysmem為空函數,buf即為img_addr。

switch (genimg_get_format(buf)) {
    case IMAGE_FORMAT_LEGACY:
        printf("## Booting kernel from Legacy Image at %08lx ...\n",
                img_addr);
        hdr = image_get_kernel(img_addr, images->verify);
        if (!hdr)
            return NULL;
        bootstage_mark(BOOTSTAGE_ID_CHECK_IMAGETYPE);

        /* get os_data and os_len */
        switch (image_get_type(hdr)) {
        case IH_TYPE_KERNEL:
        case IH_TYPE_KERNEL_NOLOAD:
            *os_data = image_get_data(hdr);
            *os_len = image_get_data_size(hdr);
            break;
        case IH_TYPE_MULTI:
            image_multi_getimg(hdr, 0, os_data, os_len);
            break;
           
case IH_TYPE_STANDALONE:
            *os_data = image_get_data(hdr);
            *os_len = image_get_data_size(hdr);
            break;
        default:
            printf("Wrong Image Type for %s command\n",
                cmdtp->name);
            bootstage_error(BOOTSTAGE_ID_CHECK_IMAGETYPE);
            return NULL;
        }

        /*
         * copy image header to allow for image overwrites during
         * kernel decompression.
         */
        memmove(&images->legacy_hdr_os_copy, hdr,
            sizeof(image_header_t));

        /* save pointer to image header */
        images->legacy_hdr_os = hdr;

        images->legacy_hdr_valid = 1;
        bootstage_mark(BOOTSTAGE_ID_DECOMP_IMAGE);
        break;
           

首先來說明一下image header的格式,在代碼中由image_header_t代表,如下:

typedef struct image_header {
    __be32      ih_magic;   /* Image Header Magic Number    */ 
    __be32      ih_hcrc;    /* Image Header CRC Checksum    */
    __be32      ih_time;    /* Image Creation Timestamp */
    __be32      ih_size;    /* Image Data Size      */
    __be32      ih_load;    /* Data  Load  Address      */
    __be32      ih_ep;      /* Entry Point Address      */
    __be32      ih_dcrc;    /* Image Data CRC Checksum  */
    uint8_t     ih_os;      /* Operating System     */
    uint8_t     ih_arch;    /* CPU architecture     */
    uint8_t     ih_type;    /* Image Type           */
    uint8_t     ih_comp;    /* Compression Type     */
    uint8_t     ih_name[IH_NMLEN];  /* Image Name       */
} image_header_t;
           

genimg_get_format檢查img header的頭4個位元組,代表image的類型,有2種,legacy和FIT,這裡使用的legacy,頭4個位元組為0x27051956。

image_get_kernel則會來計算header的crc是否正确,然後擷取image的type,根據type來擷取os的len和data起始位址。

最後将hdr的資料拷貝到images的legacy_hdr_os_copy,防止kernel image在解壓是覆寫掉hdr資料,儲存hdr指針到legacy_hdr_os中,置位legacy_hdr_valid。

從boot_get_kernel中傳回到bootm_find_os,繼續往下:

switch (genimg_get_format(os_hdr)) {
    case IMAGE_FORMAT_LEGACY:
        images.os.type = image_get_type(os_hdr);
        images.os.comp = image_get_comp(os_hdr);
        images.os.os = image_get_os(os_hdr);

        images.os.end = image_get_image_end(os_hdr);
        images.os.load = image_get_load(os_hdr);
           

根據hdr擷取os的type,comp,os,end,load addr。

/* find kernel entry point */
    if (images.legacy_hdr_valid) {
        images.ep = image_get_ep(&images.legacy_hdr_os_copy);
    } else {
        puts("Could not find kernel entry point!\n");
        return 1;
    }

    if (images.os.type == IH_TYPE_KERNEL_NOLOAD) {
        images.os.load = images.os.image_start;
        images.ep += images.os.load;
    }

    images.os.start = (ulong)os_hdr;
           

擷取os的start。

到這裡bootm_find_os就結束了,主要工作是根據image的hdr來做crc,擷取一些基本的os資訊到images結構體中。

回到do_bootm_states中接下來調用bootm_find_other,

5 第三階段:bootm_find_other

該函數大體看一下,對于legacy類型的image,擷取查詢是否有ramdisk,此處我們沒有用單獨的ramdisk,ramdisk是直接編譯到kernel image中的。

回到do_bootm_states中接下來會調用bootm_load_os。

6 第四階段:bootm_load_os

static int bootm_load_os(bootm_headers_t *images, unsigned long *load_end,
        int boot_progress)
{
    image_info_t os = images->os;
    uint8_t comp = os.comp;
    ulong load = os.load;
    ulong blob_start = os.start;
    ulong blob_end = os.end;
    ulong image_start = os.image_start;
    ulong image_len = os.image_len;
    __maybe_unused uint unc_len = CONFIG_SYS_BOOTM_LEN;
    int no_overlap = 0;
    void *load_buf, *image_buf;
#if defined(CONFIG_LZMA) || defined(CONFIG_LZO)
    int ret;
#endif /* defined(CONFIG_LZMA) || defined(CONFIG_LZO) */

    const char *type_name = genimg_get_type_name(os.type);

    load_buf = map_sysmem(load, unc_len);
    image_buf = map_sysmem(image_start, image_len);
    switch (comp) {
    case IH_COMP_NONE:
        if (load == blob_start || load == image_start) {
            printf("   XIP %s ... ", type_name);
            no_overlap = 1;
        } else {
            printf("   Loading %s ... ", type_name);
            memmove_wd(load_buf, image_buf, image_len, CHUNKSZ);
        }
        *load_end = load + image_len;
        break;
           
#ifdef CONFIG_GZIP
    case IH_COMP_GZIP:
        printf("   Uncompressing %s ... ", type_name);
        if (gunzip(load_buf, unc_len, image_buf, &image_len) != 0) {
            puts("GUNZIP: uncompress, out-of-mem or overwrite "
                "error - must RESET board to recover\n");
            if (boot_progress)
                bootstage_error(BOOTSTAGE_ID_DECOMP_IMAGE);
            return BOOTM_ERR_RESET;
        }

        *load_end = load + image_len;
        break;
#endif /* CONFIG_GZIP */
           

load_buf是之前find_os是根據hdr擷取的load addr,image_buf是find_os擷取的image的開始位址(去掉64位元組頭)。

之後則是根據hdr的comp類型來解壓拷貝image到load addr上。

這裡就需要注意,kernel選項的壓縮格式必須在uboot下打開相應的解壓縮支援,或者就不進行壓縮

這裡還有一點,load addr與image add是否可以重疊,看代碼感覺是可以重疊的,還需要實際測試一下。

回到do_bootm_states,接下來根據os從boot_os數組中擷取到了相應的os boot func,這裡是linux,則是do_bootm_linux。後面代碼如下:

/* Call various other states that are not generally used */
    if (!ret && (states & BOOTM_STATE_OS_CMDLINE))
        ret = boot_fn(BOOTM_STATE_OS_CMDLINE, argc, argv, images);
    if (!ret && (states & BOOTM_STATE_OS_BD_T))
        ret = boot_fn(BOOTM_STATE_OS_BD_T, argc, argv, images);
    if (!ret && (states & BOOTM_STATE_OS_PREP))
        ret = boot_fn(BOOTM_STATE_OS_PREP, argc, argv, images);
。。。。
    /* Check for unsupported subcommand. */
    if (ret) {
        puts("subcommand not supported\n");
        return ret;
    }

    /* Now run the OS! We hope this doesn't return */
    if (!ret && (states & BOOTM_STATE_OS_GO))
        ret = boot_selected_os(argc, argv, BOOTM_STATE_OS_GO,
                images, boot_fn);
           

這時do_bootm最後的代碼,如果正常,boot kernel之後就不應該回來了。states中定義了BOOTM_STATE_OS_PREP(對于mips處理器會使用BOOTM_STATE_OS_CMDLINE),調用do_bootm_linux,如下:

int do_bootm_linux(int flag, int argc, char *argv[], bootm_headers_t *images)
{
    /* No need for those on ARM */
    if (flag & BOOTM_STATE_OS_BD_T || flag & BOOTM_STATE_OS_CMDLINE)
        return -1; 

    if (flag & BOOTM_STATE_OS_PREP) {
        boot_prep_linux(images);
        return 0;
    }   

    if (flag & (BOOTM_STATE_OS_GO | BOOTM_STATE_OS_FAKE_GO)) {
        boot_jump_linux(images, flag);
        return 0;
    }   

    boot_prep_linux(images);
    boot_jump_linux(images, flag);
    return 0;
}
           

do_bootm_linux實作跟do_bootm類似,也是根據flag分階段運作subcommand,這裡會調到boot_prep_linux。

7 第五階段:boot_prep_linux

該函數作用是為啟動後的kernel準備參數,這個函數我們在第三部分uboot如何傳參給kernel再仔細分析一下

boot_prep_linux完成傳回到do_bootm_states後接下來就是最後一步了。執行boot_selected_os調用do_bootm_linux,flag為BOOTM_STATE_OS_GO,則調用boot_jump_linux

8 第六階段:boot_jump_linux

unsigned long machid = gd->bd->bi_arch_number;
    char *s;
    void (*kernel_entry)(int zero, int arch, uint params);
    unsigned long r2;
    int fake = (flag & BOOTM_STATE_OS_FAKE_GO);

    kernel_entry = (void (*)(int, int, uint))images->ep;

    s = getenv("machid");
    if (s) {
        strict_strtoul(s, 16, &machid);
        printf("Using machid 0x%lx from environment\n", machid);
    }

    debug("## Transferring control to Linux (at address %08lx)" \
        "...\n", (ulong) kernel_entry);
    bootstage_mark(BOOTSTAGE_ID_RUN_OS);
    announce_and_cleanup(fake);

    if (IMAGE_ENABLE_OF_LIBFDT && images->ft_len)
        r2 = (unsigned long)images->ft_addr;
    else
        r2 = gd->bd->bi_boot_params;

    if (!fake)
        kernel_entry(0, machid, r2);
           

boot_jump_linux主體函數如上

擷取gd->bd->bi_arch_number為machid,如果有env則用env的machid,kernel_entry為之前由hdr擷取的ep,也就是核心的入口位址。

fake為0,直接調用kernel_entry,參數1為0,參數2為machid,參數3為bi_boot_params。

這之後就進入了kernel的執行流程啟動,就不會再回到uboot

這整個boot過程中bootm_images_t一直作為對image資訊的全局存儲結構。

三 uboot如何傳參給kernel

uboot下的傳參機制就直接來分析boot_prep_linux函數就可以了,如下:

static void boot_prep_linux(bootm_headers_t *images)
{
    char *commandline = getenv("bootargs");

    if (IMAGE_ENABLE_OF_LIBFDT && images->ft_len) {
#ifdef CONFIG_OF_LIBFDT
        debug("using: FDT\n");
        if (image_setup_linux(images)) {
            printf("FDT creation failed! hanging...");
            hang();
        }
#endif
    } else if (BOOTM_ENABLE_TAGS) {
        debug("using: ATAGS\n");
        setup_start_tag(gd->bd);
        if (BOOTM_ENABLE_SERIAL_TAG)
            setup_serial_tag(¶ms);
        if (BOOTM_ENABLE_CMDLINE_TAG)
            setup_commandline_tag(gd->bd, commandline);
        if (BOOTM_ENABLE_REVISION_TAG)
            setup_revision_tag(¶ms);
        if (BOOTM_ENABLE_MEMORY_TAGS)
            setup_memory_tags(gd->bd);
        if (BOOTM_ENABLE_INITRD_TAG) {
            if (images->rd_start && images->rd_end) {
                setup_initrd_tag(gd->bd, images->rd_start,
                         images->rd_end);
            }
        }
        setup_board_tags(¶ms);
        setup_end_tag(gd->bd);
    } else {
        printf("FDT and ATAGS support not compiled in - hanging\n");
        hang();
    }
    do_nonsec_virt_switch();
}
           

首先擷取出環境變量bootargs,這就是要傳遞給kernel的參數。

在配置檔案中定義了CONFIG_CMDLINE_TAG以及CONFIG_SETUP_MEMORY_TAGS,根據arch/arm/include/asm/bootm.h,則會定義BOOTM_ENABLE_TAGS,首先調用setup_start_tag,如下:

static void setup_start_tag (bd_t *bd)
{       
    params = (struct tag *)bd->bi_boot_params;
        
    params->hdr.tag = ATAG_CORE;
    params->hdr.size = tag_size (tag_core);
            
    params->u.core.flags = 0;
    params->u.core.pagesize = 0;
    params->u.core.rootdev = 0;
            
    params = tag_next (params);
}           
           

params是一個全局靜态變量用來存儲要傳給kernel的參數,這裡bd->bi_boot_params的值賦給params,是以 bi_boot_params需要進行初始化,進而将params放在一個合理的記憶體區域。

這裡params為struct tag的結構,如下:

struct tag {
    struct tag_header hdr;
    union {
        struct tag_core     core;
        struct tag_mem32    mem;
        struct tag_videotext    videotext;
        struct tag_ramdisk  ramdisk;
        struct tag_initrd   initrd;
        struct tag_serialnr serialnr;
        struct tag_revision revision;
        struct tag_videolfb videolfb;
        struct tag_cmdline  cmdline;

        /*
         * Acorn specific
         */
        struct tag_acorn    acorn;

        /*
         * DC21285 specific
         */
        struct tag_memclk   memclk;
    } u;
};
           

tag包括hdr和各種類型的tag_*,hdr來标志目前的tag是哪種類型的tag。

setup_start_tag是初始化了第一個tag,是tag_core類型的tag。最後調用tag_next跳到第一個tag末尾,為下一個tag做準備。

回到boot_prep_linux,接下來調用setup_commandline_tag,如下:

static void setup_commandline_tag(bd_t *bd, char *commandline)
{           
    char *p;
            
    if (!commandline)
        return;
        
    /* eat leading white space */
    for (p = commandline; *p == ' '; p++);
            
    /* skip non-existent command lines so the kernel will still
     * use its default command line.
     */     
    if (*p == '\0')
        return;
        
    params->hdr.tag = ATAG_CMDLINE;
    params->hdr.size =
        (sizeof (struct tag_header) + strlen (p) + 1 + 4) >> 2;

    strcpy (params->u.cmdline.cmdline, p);

    params = tag_next (params);
}
           

該函數設定第二個tag的hdr.tag為ATAG_CMDLINE,然後拷貝cmdline到tags的cmdline結構體中,跳到下一個tag。

回到boot_prep_linux,調用setup_memory_tag,如下:

static void setup_memory_tags(bd_t *bd)
{       
    int i;  
        
    for (i = 0; i < CONFIG_NR_DRAM_BANKS; i++) {
        params->hdr.tag = ATAG_MEM;
        params->hdr.size = tag_size (tag_mem32);
                
        params->u.mem.start = bd->bi_dram[i].start;
        params->u.mem.size = bd->bi_dram[i].size;
        
        params = tag_next (params);
    }   
}   
           

過程類似,将第三個tag設為ATAG_MEM,将mem的start,size儲存在此處,如果有多片ram(CONFIG_NR_DRAM_BANKS > 1),則将下一個tag儲存下一片ram的資訊,依次類推。

回到boot_prep_linux中,調用setup_board_tags,這個函數是__weak屬性,我們可以在自己的闆級檔案中去實作來儲存跟闆子相關的參數,如果沒有實作,則是空函數。

最後調用setup_end_tags,如下:

static void setup_end_tag(bd_t *bd)
{       
    params->hdr.tag = ATAG_NONE;
    params->hdr.size = 0;
}       
           

最後将最末尾的tag設定為ATAG_NONE,标志tag結束。

這樣整個參數的準備就結束了,最後在調用boot_jump_linux時會将tags的首位址也就是bi_boot_params傳給kernel,供kernel來解析這些tag,kernel如何解析看第四部分kenrel如何找到并解析參數

總結一下,uboot将參數以tag數組的形式布局在記憶體的某一個位址,每個tag代表一種類型的參數,首尾tag标志開始和結束,首位址傳給kernel供其解析。

四 kernel如何找到并解析參數

uboot在調用boot_jump_linux時最後kernel_entry(0, machid, r2);

按照二進制規範eabi,machid存在寄存器r1,r2即tag的首位址存在寄存器r2.

檢視kernel的入口函數,在arch/arm/kernel/head.S,中可以看到如下一段彙編:

/*  
     * r1 = machine no, r2 = atags or dtb,
     * r8 = phys_offset, r9 = cpuid, r10 = procinfo
     */
    bl  __vet_atags
           

可以看出kernel剛啟動會調用__vet_atags來處理uboot傳來的參數,如下:

__vet_atags:
    tst r2, #0x3            @ aligned?
    bne 1f

    ldr r5, [r2, #0]
#ifdef CONFIG_OF_FLATTREE
    ldr r6, =OF_DT_MAGIC        @ is it a DTB?
    cmp r5, r6
    beq 2f
#endif
    cmp r5, #ATAG_CORE_SIZE     @ is first tag ATAG_CORE?
    cmpne   r5, #ATAG_CORE_SIZE_EMPTY
    bne 1f
    ldr r5, [r2, #4]
    ldr r6, =ATAG_CORE
    cmp r5, r6
    bne 1f

2:  mov pc, lr              @ atag/dtb pointer is ok

1:  mov r2, #0
    mov pc, lr
ENDPROC(__vet_atags)
           

主要是對tag進行了一個簡單的校驗,檢視tag頭4個位元組(tag_core的size)和第二個4位元組(tag_core的type)。

之後對參數的真正分析處理是在start_kernel的setup_arch中,在arch/arm/kernel/setup.c中,如下:

void __init setup_arch(char **cmdline_p)
{
    struct machine_desc *mdesc;

    setup_processor();
    mdesc = setup_machine_fdt(__atags_pointer);
    if (!mdesc)
        mdesc = setup_machine_tags(machine_arch_type);
    machine_desc = mdesc;
    machine_name = mdesc->name;

#ifdef CONFIG_ZONE_DMA
    if (mdesc->dma_zone_size) {
        extern unsigned long arm_dma_zone_size;
        arm_dma_zone_size = mdesc->dma_zone_size;
    }           
#endif                 
    if (mdesc->restart_mode)
        reboot_setup(&mdesc->restart_mode);
    
    init_mm.start_code = (unsigned long) _text;
    init_mm.end_code   = (unsigned long) _etext;
    init_mm.end_data   = (unsigned long) _edata;
    init_mm.brk    = (unsigned long) _end;

    /* populate cmd_line too for later use, preserving boot_command_line */
    strlcpy(cmd_line, boot_command_line, COMMAND_LINE_SIZE);
    *cmdline_p = cmd_line;

    parse_early_param();
           

關鍵函數是setup_machine_tags,如下:

static struct machine_desc * __init setup_machine_tags(unsigned int nr)
{
    struct tag *tags = (struct tag *)&init_tags;
    struct machine_desc *mdesc = NULL, *p;
    char *from = default_command_line;
。。。。
    if (__atags_pointer)
        tags = phys_to_virt(__atags_pointer);
    else if (mdesc->atag_offset)
        tags = (void *)(PAGE_OFFSET + mdesc->atag_offset);

。。。。。
    if (tags->hdr.tag == ATAG_CORE) {
        if (meminfo.nr_banks != 0)
            squash_mem_tags(tags);
        save_atags(tags);
        parse_tags(tags);
    }

    /* parse_early_param needs a boot_command_line */
    strlcpy(boot_command_line, from, COMMAND_LINE_SIZE);
。。。
}
           

首先回去擷取tags的首位址,如果收個tag是ATAG_CORE類型,則會調用save_atags拷貝一份tags,最後調用parse_tags來分析這個tag list,如下:

static int __init parse_tag(const struct tag *tag)
{
    extern struct tagtable __tagtable_begin, __tagtable_end;
    struct tagtable *t;

    for (t = &__tagtable_begin; t < &__tagtable_end; t++)
        if (tag->hdr.tag == t->tag) {
            t->parse(tag);
            break;
        }
    
    return t < &__tagtable_end;
}   
        
/*  
 * Parse all tags in the list, checking both the global and architecture
 * specific tag tables.
 */         
static void __init parse_tags(const struct tag *t)
{       
    for (; t->hdr.size; t = tag_next(t))
        if (!parse_tag(t))
            printk(KERN_WARNING
                "Ignoring unrecognised tag 0x%08x\n",
                t->hdr.tag);
}   
           

周遊tags list,找到在tagstable中比對的處理函數(hdr.tag一緻),來處理響應的tag。

這個tagtable的處理函數是在調用__tagtable來注冊的,如下:

static int __init parse_tag_cmdline(const struct tag *tag)
{
#if defined(CONFIG_CMDLINE_EXTEND)
    strlcat(default_command_line, " ", COMMAND_LINE_SIZE);
    strlcat(default_command_line, tag->u.cmdline.cmdline,
        COMMAND_LINE_SIZE);
#elif defined(CONFIG_CMDLINE_FORCE)
    pr_warning("Ignoring tag cmdline (using the default kernel command line)\n");
#else
    strlcpy(default_command_line, tag->u.cmdline.cmdline,
        COMMAND_LINE_SIZE);
#endif
    return 0;
}

__tagtable(ATAG_CMDLINE, parse_tag_cmdline);
           

看這個對cmdline類型的tag的處理,就是将tag中的cmdline拷貝到default_command_line中。還有其他如mem類型的參數也會注冊這個處理函數,來比對處理響應的tag。這裡就先以cmdline的tag為例。

這樣周遊并處理完tags list之後回到setup_machine_tags,将from(即default_command_line)中的cmdline拷貝到boot_command_line,

最後傳回到setup_arch中,

/* populate cmd_line too for later use, preserving boot_command_line */
    strlcpy(cmd_line, boot_command_line, COMMAND_LINE_SIZE);
    *cmdline_p = cmd_line;

    parse_early_param();
           

将boot_command_line拷貝到start_kernel給setup_arch的cmdline_p中,這裡中間拷貝的boot_command_line是給parse_early_param來做一個早期的參數分析的。

到這裡kernel就完全接收并分析完成了uboot傳過來的args。

簡單的講,uboot利用函數指針及傳參規範,它将

l   R0: 0x0

l   R1: 機器号

l   R2: 參數位址

三個參數傳遞給核心。

其中,R2寄存器傳遞的是一個指針,這個指針指向一個TAG區域。

UBOOT和Linux核心之間正是通過這個擴充了的TAG區域來進行複雜參數的傳遞,如 command line,檔案系統資訊等等,使用者也可以擴充這個TAG來進行更多參數的傳遞。TAG區域的首位址,正是R2的值。

繼續閱讀