最近嘗試使用flink的table-sql,發現沒有from_unixtime函數,隻能自定義該udf。
原始kafka消息日志
{"action":"exposure","itemId":"[email protected]@1576","rankIndex":14,"time":"1563641998","unionId":"ohmdTtymqiQw5aSxIt3ejxeAqpgs"}
{"action":"exposure","itemId":"[email protected]@16","rankIndex":10,"time":"1563641998","unionId":"ohmdTt_gZk2UkbbWsXBARMsTl1mI"}
{"action":"exposure","itemId":"[email protected]@287","rankIndex":21,"time":"1563641998","unionId":"ohmdTt_gZk2UkbbWsXBARMsTl1mI"}
{"action":"exposure","itemId":"[email protected]@12","rankIndex":22,"time":"1563641998","unionId":"ohmdTt_gZk2UkbbWsXBARMsTl1mI"}
{"action":"exposure","itemId":"[email protected]@1523","rankIndex":10,"time":"1563641998","unionId":"ohmdTtzivXuT9u3oWFO5daAxziI0"}
{"action":"exposure","itemId":"[email protected]@2759","rankIndex":25,"time":"1563641998","unionId":"ohmdTtzivXuT9u3oWFO5daAxziI0"}
{"action":"exposure","itemId":"[email protected]@68","rankIndex":2,"time":"1563641998","unionId":"ohmdTt_gZk2UkbbWsXBARMsTl1mI"}
{"action":"exposure","itemId":"[email protected]@2045","rankIndex":13,"time":"1563641998","unionId":"ohmdTtymqiQw5aSxIt3ejxeAqpgs"}
{"action":"exposure","itemId":"[email protected]@982","rankIndex":17,"time":"1563641998","unionId":"ohmdTtymqiQw5aSxIt3ejxeAqpgs"}
{"action":"exposure","itemId":"[email protected]@1498","rankIndex":28,"time":"1563641998","unionId":"ohmdTtzivXuT9u3oWFO5daAxziI0"}
我們要格式化就是time字段。
自定義udf函數
import org.apache.flink.table.functions.ScalarFunction;
import java.text.SimpleDateFormat;
import java.util.Date;
public class FromUnixTimeUDF extends ScalarFunction {
public String DATE_FORMAT;
public FromUnixTimeUDF() {
this.DATE_FORMAT = "yyyy-MM-dd HH:mm:ss";
}
public FromUnixTimeUDF(String dateFormat) {
this.DATE_FORMAT = dateFormat;
}
public String eval(String longTime) {
try {
SimpleDateFormat sdf = new SimpleDateFormat(DATE_FORMAT);
Date date = new Date(Long.parseLong(longTime) * 1000);
return sdf.format(date);
} catch (Exception e) {
return null;
}
}
}
主程式main函數
final StreamExecutionEnvironment env = StreamExecutionEnvironment.createLocalEnvironment();
StreamTableEnvironment tEnv = TableEnvironment.getTableEnvironment(env);
tEnv.registerFunction("from_unixtime", new FromUnixTimeUDF());
tEnv.connect(initKafkaDescriptor()).withFormat(new Json().failOnMissingField(true).deriveSchema())
.withSchema(initSchema()).inAppendMode().registerTableSource("transfer_plan_show");
Table result = tEnv.sqlQuery("select unionId,itemId,action,from_unixtime(`time`) as creat_time,rankIndex as rank_index from transfer_plan_show");
result.printSchema();
tEnv.toAppendStream(result, Row.class).print();
env.execute();
說明因為sql中time是關鍵字,是以加上加上兩個反斜杠 ``.
相關函數
//連結kafka配置
private Kafka initKafkaDescriptor(){
Kafka kafkaDescriptor= new Kafka().version("0.11").topic("transfer_plan_show")
.startFromLatest().property("bootstrap.servers", KafkaConfig.KAFKA_BROKER_LIST)
.property("group.id", "trafficwisdom-streaming");
return kafkaDescriptor;
}
//根據json自定義schema
private Schema initSchema(){
Schema schema=new Schema().field("action", Types.STRING())
.field("itemId",Types.STRING())
.field("time",Types.STRING())
.field("unionId",Types.STRING())
.field("rankIndex",Types.INT());
return schema;
}