N-S方程
ρ d V d t = ρ g − ∇ p + μ ∇ 2 V \rho\frac{dV}{dt}=\rho g-\nabla p + \mu\nabla^2V ρdtdV=ρg−∇p+μ∇2V
ρ ( ∂ V ∂ t + ( V ⋅ ∇ ) V ) = ρ g − ∇ p + μ ∇ 2 V \rho\big( \frac{\partial V}{\partial t} + (V\cdot \nabla)V \big)=\rho g-\nabla p + \mu\nabla^2V ρ(∂t∂V+(V⋅∇)V)=ρg−∇p+μ∇2V
∂ V ∂ t + ( V ⋅ ∇ ) V = g − 1 ρ ∇ p + μ ρ ∇ 2 V \frac{\partial V}{\partial t} + (V\cdot \nabla)V = g-\frac{1}{\rho}\nabla p + \frac{\mu}{\rho}\nabla^2V ∂t∂V+(V⋅∇)V=g−ρ1∇p+ρμ∇2V
d V d t = ∂ v i ∂ t + ( V ⋅ ∇ ) V = ∂ v i ∂ t + v j ∂ v i ∂ x j \frac{dV}{dt} = \frac{\partial v_i}{\partial t}+(V\cdot \nabla)V = \frac{\partial v_i}{\partial t}+v_j\frac{\partial v_i}{\partial x_j} dtdV=∂t∂vi+(V⋅∇)V=∂t∂vi+vj∂xj∂vi
笛卡爾坐标系下的N-S方程
∂ v i ∂ t + v j ∂ v i ∂ x j = g − 1 ρ ∂ p ∂ x i + μ ρ ∂ 2 v i ∂ x j 2 \frac{\partial v_i}{\partial t}+v_j\frac{\partial v_i}{\partial x_j}=g-\frac{1}{\rho}\frac{\partial p}{\partial x_i}+\frac{\mu}{\rho}\frac{\partial^2v_i}{\partial x^2_j} ∂t∂vi+vj∂xj∂vi=g−ρ1∂xi∂p+ρμ∂xj2∂2vi