天天看點

決策樹python實作決策樹python實作

決策樹python實作

算法構造

算法優缺點

  • 優點:計算複雜度不高,輸出結果易于了解,對中間值的缺失不敏感,可以處理不相關特征資料。
  • 缺點:可能會産生過度比對問題。
  • 适用資料類型:數值型和标稱型。

算法流程

  • 收集資料:可以使用任何方法。
  • 準備資料:樹構造算法隻适用于标稱型資料,是以數值型資料必須離散化。
  • 分析資料:可以使用任何方法,構造樹完成之後,我們應該檢查圖形是否符合預期。
  • 訓練算法:構造樹的資料結構。
  • 測試算法:使用經驗樹計算錯誤率。
  • 使用算法:此步驟可以适用于任何監督學習算法,而使用決策樹可以更好地了解資料的内在含義。

資訊增益

# 計算給定資料集的香農熵
from math import log

def calcShannonEnt(dataSet):
    numEntries = len(dataSet)
    labelCounts = {}
    for featVec in dataSet: #the the number of unique elements and their occurance
        currentLabel = featVec[-1]
        if currentLabel not in labelCounts.keys(): labelCounts[currentLabel] = 0
        labelCounts[currentLabel] += 1
    shannonEnt = 0.0
    for key in labelCounts:
        prob = float(labelCounts[key])/numEntries
        shannonEnt -= prob * log(prob,2) #log base 2
    return shannonEnt


def createDataSet():
    dataSet = [[1, 1, 'yes'],
              [1, 1, 'yes'],
              [1, 0, 'no'],
              [0, 1, 'no'],
              [0, 1, 'no']]
    labels = ['no surfacing', 'flippers']
    return dataSet, labels
           
myDat
           
[[1, 1, 'yes'], [1, 1, 'yes'], [1, 0, 'no'], [0, 1, 'no'], [0, 1, 'no']]
           
0.9709505944546686
           

熵越高,則混合的資料也越多,我們可以在資料集中添加更多的分類,觀察熵是如何變化的。這裡我們增加第三個名為maybe的分類, 測試熵的變化:

myDat[0][-1] = 'maybe'
calcShannonEnt(myDat)
           
1.3709505944546687
           

劃分資料集

# 按照給定特征劃分資料集
# /*
# * dataSet: 待劃分的資料集
# * axis: 劃分資料的特征
# * 需要傳回的特征的值
# */
def splitDataSet(dataSet, axis, value):
    retDataSet = []
    for featVec in dataSet:
        if featVec[axis] == value:
            reducedFeatVec = featVec[:axis]     #chop out axis used for splitting
            reducedFeatVec.extend(featVec[axis+1:])
            retDataSet.append(reducedFeatVec)
    return retDataSet
           
myDat, labels = createDataSet()
myDat
           
[[1, 1, 'yes'], [1, 1, 'yes'], [1, 0, 'no'], [0, 1, 'no'], [0, 1, 'no']]
           
[[1, 'yes'], [1, 'yes'], [0, 'no']]
           
[[1, 'no'], [1, 'no']]
           
# 選擇最好的資料集劃分方式
def chooseBestFeatureToSplit(dataSet):
    numFeatures = len(dataSet[0]) - 1      #the last column is used for the labels
    baseEntropy = calcShannonEnt(dataSet)
    bestInfoGain = 0.0; bestFeature = -1
    for i in range(numFeatures):        #iterate over all the features
        featList = [example[i] for example in dataSet]#create a list of all the examples of this feature
        uniqueVals = set(featList)       #get a set of unique values
        newEntropy = 0.0
        for value in uniqueVals:
            subDataSet = splitDataSet(dataSet, i, value)
            prob = len(subDataSet)/float(len(dataSet))
            newEntropy += prob * calcShannonEnt(subDataSet)     
        infoGain = baseEntropy - newEntropy     #calculate the info gain; ie reduction in entropy
        if (infoGain > bestInfoGain):       #compare this to the best gain so far
            bestInfoGain = infoGain         #if better than current best, set to best
            bestFeature = i
    return bestFeature                      #returns an integer
           
myDat, labels = createDataSet()
myDat
           
[[1, 1, 'yes'], [1, 1, 'yes'], [1, 0, 'no'], [0, 1, 'no'], [0, 1, 'no']]
           
bestFeature = chooseBestFeatureToSplit(myDat)
print("bestFeature is {}".format(bestFeature))
           
bestFeature is 0
           

遞歸構造決策樹

# 多數表決決定該葉子節點分類
import operator
def majorityCnt(classList):
    classCount = {}
    for vote in classList:
        if vote not in classCount.keys():
            classCount[vote] = 0
        classCount[vote] += 1
    sortedClassCount = sorted(classCount.iteritems(), key=operator.itemgetter(1), reverse=True)
    return sortedClassCount[0][0]
           
# 建立樹的函數代碼
def createTree(dataSet,labels):
    classList = [example[-1] for example in dataSet]
    if classList.count(classList[0]) == len(classList): 
        return classList[0]#stop splitting when all of the classes are equal
    if len(dataSet[0]) == 1: #stop splitting when there are no more features in dataSet
        return majorityCnt(classList)
    bestFeat = chooseBestFeatureToSplit(dataSet)
    bestFeatLabel = labels[bestFeat]
    myTree = {bestFeatLabel:{}}
    del(labels[bestFeat])
    featValues = [example[bestFeat] for example in dataSet]
    uniqueVals = set(featValues)
    for value in uniqueVals:
        subLabels = labels[:]       #copy all of labels, so trees don't mess up existing labels
        myTree[bestFeatLabel][value] = createTree(splitDataSet(dataSet, bestFeat, value),subLabels)
    return myTree              
           
myDat, labels = createDataSet()
myDat
           
[[1, 1, 'yes'], [1, 1, 'yes'], [1, 0, 'no'], [0, 1, 'no'], [0, 1, 'no']]
           
{'no surfacing': {0: 'no', 1: {'flippers': {0: 'no', 1: 'yes'}}}}
           

在python中使用Matplotlib注解繪制樹形圖

Matplotlib提供了一個非常有用的注解工具annotations

# 使用文本注解繪制樹節點
import matplotlib.pyplot as plt

#解決中文顯示問題
plt.rcParams['font.sans-serif']=['SimHei']
plt.rcParams['axes.unicode_minus'] = False

decisionNode = dict(boxstyle="sawtooth", fc="0.8")
leafNode = dict(boxstyle="round4", fc="0.8")
arrow_args = dict(arrowstyle='<-')

def plotNode(nodeText, centerPt, parentPt, nodeType):
    createPlot.ax1.annotate(nodeText, xy=parentPt, xycoords='axes fraction',
                            xytext=centerPt, textcoords="axes fraction",
                            va="center", ha="center", bbox=nodeType, arrowprops=arrow_args)


def createPlot():
    fig =plt.figure(1, facecolor="white")
    fig.clf()
    createPlot.ax1 = plt.subplot(111, frameon=False)
    plotNode('決策節點', (0.5, 0.1), (0.1, 0.5), decisionNode)
    plotNode('葉節點', (0.8, 0.1), (0.3, 0.8), leafNode)
    plt.show()
           
決策樹python實作決策樹python實作
# 擷取葉節點的數目和數的層數
def getNumLeafs(myTree):
    numLeafs = 0
    firstStr = list(myTree.keys())[0]
    secondDict = myTree[firstStr]
    for key in secondDict.keys():
        if type(secondDict[key]).__name__ == 'dict':
            numLeafs += getNumLeafs(secondDict[key])
        else:
            numLeafs += 1
    return numLeafs


def getTreeDepth(myTree):
    maxDepth = 0
    firstStr = list(myTree.keys())[0]
    secondDict = myTree[firstStr]
    for key in secondDict.keys():
        if type(secondDict[key]).__name__ == 'dict':
            thisDepth = 1 + getTreeDepth(secondDict[key])
        else:
            thisDepth = 1
        if thisDepth > maxDepth:
            maxDepth = thisDepth
    return maxDepth


def retrieveTree(i):
    listOfTrees = [{'flippers': {0: 'no', 1: {'no surfacing': {0: 'no', 1: 'yes'}}}},
                   {'flippers': {0: 'no', 1: {'no surfacing': {0: {'head':{0: 'no', 1:'yes'}}, 1: 'yes'}}}}]

    return listOfTrees[i]
           
{'flippers': {0: 'no',
  1: {'no surfacing': {0: {'head': {0: 'no', 1: 'yes'}}, 1: 'yes'}}}}
           
3
           
2
           
# plotTree函數
def plotMidText(cntrPt, parentPt, txtString):
    xMid = (parentPt[0] - cntrPt[0])/2.0 + cntrPt[0]
    yMid = (parentPt[1] - cntrPt[1]) / 2.0 + cntrPt[1]
    createPlot.ax1.text(xMid, yMid, txtString)


def plotTree(myTree, parentPr, nodeTxt):
    numLeafs = getNumLeafs(myTree)
    depth = getTreeDepth(myTree)
    firstStr = list(myTree.keys())[0]
    cntrpt = (plotTree.xoff + (1.0 + float(numLeafs)) / 2.0 / plotTree.totalW, plotTree.yoff)
    plotMidText(cntrpt, parentPr, nodeTxt)
    plotNode(firstStr, cntrpt, parentPr, decisionNode)
    secondDict = myTree[firstStr]
    plotTree.yoff =plotTree.yoff - 1.0 / plotTree.totalD
    for key in secondDict.keys():
        if type(secondDict[key]).__name__ == 'dict':
            plotTree(secondDict[key], cntrpt, str(key))
        else:
            plotTree.xoff = plotTree.xoff + 1.0 / plotTree.totalW
            plotNode(secondDict[key], (plotTree.xoff, plotTree.yoff), cntrpt, leafNode)
            plotMidText((plotTree.xoff, plotTree.yoff), cntrpt, str(key))
    plotTree.yoff = plotTree.yoff + 1.0 / plotTree.totalD


def createPlot(inTree):
    fig = plt.figure(1, facecolor='White')
    fig.clf()
    axprops = dict(xticks=[], yticks=[])
    createPlot.ax1 = plt.subplot(111, frameon=False, **axprops)
    plotTree.totalW = float(getNumLeafs(inTree))
    plotTree.totalD = float(getTreeDepth(inTree))
    plotTree.xoff = -0.5 / plotTree.totalW;
    plotTree.yoff = 1.0
    plotTree(inTree, (0.5, 1.0), '')
    plt.show()
           
myTree = retrieveTree(1)
createPlot(myTree)
           
決策樹python實作決策樹python實作
myTree['flippers'][0] = 'maybe'
createPlot(myTree)
           
決策樹python實作決策樹python實作

測試和存儲分類器

測試算法:使用決策樹執行分類

# 使用決策樹的分類函數
def classify(inputTree, featLabels, testVec):
    firstStr = list(inputTree.keys())[0]
    secondDict = inputTree[firstStr]
    featIndex = featLabels.index(firstStr)
    for key in secondDict.keys():
        if testVec[featIndex] == key:
            if type(secondDict[key]).__name__ == 'dict':
                classLabel = classify(secondDict[key], featLabels, testVec)
            else:
                classLabel = secondDict[key]
    return classLabel
           
labels
           
['no surfacing', 'flippers']
           
myTree = retrieveTree(0)
myTree
           
{'flippers': {0: 'no', 1: {'no surfacing': {0: 'no', 1: 'yes'}}}}
           
'no'
           
'yes'
           

使用算法:決策樹的存儲

# 使用pickle子產品存儲決策樹
def storeTree(inputTree, filename):
    import pickle
    fw = open(filename, 'wb')
    pickle.dump(inputTree, fw)
    fw.close()
    
    
def grabTree(filename):
    import pickle
    fr = open(filename, 'rb')
    return pickle.load(fr)
           
myTree
           
{'flippers': {0: 'no', 1: {'no surfacing': {0: 'no', 1: 'yes'}}}}
           
{'flippers': {0: 'no', 1: {'no surfacing': {0: 'no', 1: 'yes'}}}}
           

執行個體:使用決策樹預測隐形眼鏡類型

  • 收集資料:提供的文本檔案。
  • 準備資料:解析tab鍵分隔的資料行。
  • 分析資料:快速檢查資料,確定正确地解析資料内容,使用createPlot()函數繪制最終的樹形圖。
  • 訓練算法:使用3.1節的createTree()函數。
  • 測試算法:編寫測試函數驗證決策樹可以正确分類給定的資料執行個體。
  • 使用算法:存儲樹的資料結構,以便下次使用時無需重新構造樹。
lensesTree
           
{'tearRate': {'normal': {'astigmatic': {'no': {'age': {'pre': 'soft',
      'presbyopic': {'prescript': {'hyper': 'soft', 'myope': 'no lenses'}},
      'young': 'soft'}},
    'yes': {'prescript': {'hyper': {'age': {'pre': 'no lenses',
        'presbyopic': 'no lenses',
        'young': 'hard'}},
      'myope': 'hard'}}}},
  'reduced': 'no lenses'}}
           
決策樹python實作決策樹python實作