天天看點

記錄Opencv手眼标定的過程

  • 參考文獻
    • 參考文獻1:OpenCV手眼标定(calibrateHandeye())
    • 參考文獻2:【OpenCV3學習筆記 】相機标定函數 calibrateCamera( ) 使用詳解(附相機标定程式和資料)
  • 思路:
    1. 按照參考文獻1的做法,首先要拿到标定闆的位姿與機器人TCP的位姿;TCP的位姿是由機器人上位機軟體或API給出的,是以第一步是先想辦法拿到标定闆的位姿
    2. 标定闆位姿:直接跑參考文獻2的代碼即可,我稍作了修改,代碼如下:
    3. 拿到位姿之後,進一步用參考文獻二中的方法,标定出手眼變換矩陣
  • 一些參數的問題(比如标定闆的size):
    • OpenCV标定的幾個常用函數、及其參數解釋
/// 标定闆位姿解算程式
#include <opencv2/opencv.hpp>
#include <iostream>
#include <string>
#include <vector>

using namespace cv;
using namespace std;

/*
@param File_Directory 為檔案夾目錄
@param FileType 為需要查找的檔案類型
@param FilesName 為存放檔案名的容器
@other 目前的寫法是按1.png,2.png這樣來讀取的,請按需要修改
*/
void getFilesName(string &File_Directory, string &FileType, vector<string>&FilesName)
{
    int count = 1;//初始圖檔索引
    while (true) {
        fstream _file;
        string pic_name = File_Directory + "/" + to_string(count) + FileType;
        _file.open(pic_name,ios::in);
        if(!_file) {
            cout<<pic_name<<"沒有被建立\n";
            break;
        } else {
            cout<<pic_name<<"已經存在\n";
            FilesName.push_back(pic_name);
        }
        count++;
    }
}

void m_calibration(vector<string> &FilesName, Size board_size, Size square_size, Mat &cameraMatrix, Mat &distCoeffs, vector<Mat> &rvecsMat, vector<Mat> &tvecsMat)
{
    ofstream fout("caliberation_result.txt");                       // 儲存标定結果的檔案

    cout << "開始提取角點………………" << endl;
    int image_count = 0;                                            // 圖像數量
    Size image_size;                                                // 圖像的尺寸

    vector<Point2f> image_points;                                   // 緩存每幅圖像上檢測到的角點
    vector<vector<Point2f>> image_points_seq;                       // 儲存檢測到的所有角點

    for (int i = 0;i < FilesName.size();i++)
    {
        image_count++;

        // 用于觀察檢驗輸出
        cout << "image_count = " << image_count << endl;
        Mat imageInput = imread(FilesName[i]);
        if (image_count == 1)  //讀入第一張圖檔時擷取圖像寬高資訊
        {
            image_size.width = imageInput.cols;
            image_size.height = imageInput.rows;
            cout << "image_size.width = " << image_size.width << endl;
            cout << "image_size.height = " << image_size.height << endl;
        }

        /* 提取角點 */
        bool ok = findChessboardCorners(imageInput, board_size, image_points, CV_CALIB_CB_ADAPTIVE_THRESH | CV_CALIB_CB_NORMALIZE_IMAGE);
        if (0 == ok)
        {
            cout <<"第"<< image_count <<"張照片提取角點失敗,請删除後,重新标定!"<<endl; //找不到角點
            imshow("失敗照片", imageInput);
            waitKey(0);
        }
        else
        {
            Mat view_gray;
            cout << "imageInput.channels()=" << imageInput.channels() << endl;
            cvtColor(imageInput, view_gray, CV_RGB2GRAY);

            /* 亞像素精确化 */
            //find4QuadCornerSubpix(view_gray, image_points, Size(5, 5)); //對粗提取的角點進行精确化
            cv::cornerSubPix(view_gray, image_points, cv::Size(11, 11), cv::Size(-1, -1), cv::TermCriteria(CV_TERMCRIT_ITER + CV_TERMCRIT_EPS, 20, 0.01));

            image_points_seq.push_back(image_points);  //儲存亞像素角點

            /* 在圖像上顯示角點位置 */
            drawChessboardCorners(view_gray, board_size, image_points, true);

            //imshow("Camera Calibration", view_gray);//顯示圖檔
            //waitKey(100);//暫停0.1S
        }
    }
    cout << "角點提取完成!!!" << endl;


    /*棋盤三維資訊*/
    vector<vector<Point3f>> object_points_seq;                     // 儲存标定闆上角點的三維坐标

    for (int t = 0;t < image_count;t++)
    {
        vector<Point3f> object_points;
        for (int i = 0;i < board_size.height;i++)
        {
            for (int j = 0;j < board_size.width;j++)
            {
                Point3f realPoint;
                /* 假設标定闆放在世界坐标系中z=0的平面上 */
                realPoint.x = i*square_size.width;
                realPoint.y = j*square_size.height;
                realPoint.z = 0;
                object_points.push_back(realPoint);
            }
        }
        object_points_seq.push_back(object_points);
    }

    /* 運作标定函數 */
    double err_first = calibrateCamera(object_points_seq, image_points_seq, image_size, cameraMatrix, distCoeffs, rvecsMat, tvecsMat, CV_CALIB_FIX_K3);
    fout << "重投影誤差1:" << err_first << "像素" << endl << endl;
    cout << "标定完成!!!" << endl;


    cout << "開始評價标定結果………………";
    double total_err = 0.0;            // 所有圖像的平均誤差的總和
    double err = 0.0;                  // 每幅圖像的平均誤差
    double totalErr = 0.0;
    double totalPoints = 0.0;
    vector<Point2f> image_points_pro;     // 儲存重新計算得到的投影點

    for (int i = 0;i < image_count;i++)
    {

        projectPoints(object_points_seq[i], rvecsMat[i], tvecsMat[i], cameraMatrix, distCoeffs, image_points_pro);   //通過得到的錄影機内外參數,對角點的空間三維坐标進行重新投影計算

        err = norm(Mat(image_points_seq[i]), Mat(image_points_pro), NORM_L2);

        totalErr += err*err;
        totalPoints += object_points_seq[i].size();

        err /= object_points_seq[i].size();
        //fout << "第" << i + 1 << "幅圖像的平均誤差:" << err << "像素" << endl;
        total_err += err;
    }
    fout << "重投影誤差2:" << sqrt(totalErr / totalPoints) << "像素" << endl << endl;
    fout << "重投影誤差3:" << total_err / image_count << "像素" << endl << endl;


    //儲存定标結果
    cout << "開始儲存定标結果………………" << endl;
    Mat rotation_matrix = Mat(3, 3, CV_32FC1, Scalar::all(0)); /* 儲存每幅圖像的旋轉矩陣 */
    fout << "相機内參數矩陣:" << endl;
    fout << cameraMatrix << endl << endl;
    fout << "畸變系數:\n";
    fout << distCoeffs << endl << endl << endl;
    for (int i = 0; i < image_count; i++)
    {
        fout << "第" << i + 1 << "幅圖像的旋轉向量:" << endl;
        fout << rvecsMat[i] << endl;

        /* 将旋轉向量轉換為相對應的旋轉矩陣 */
        Rodrigues(rvecsMat[i], rotation_matrix);
        fout << "第" << i + 1 << "幅圖像的旋轉矩陣:" << endl;
        fout << rotation_matrix << endl;
        fout << "第" << i + 1 << "幅圖像的平移向量:" << endl;
        fout << tvecsMat[i] << endl << endl;
    }
    cout << "定标結果完成儲存!!!" << endl;
    fout << endl;
}

void m_undistort(vector<string> &FilesName, Size image_size, Mat &cameraMatrix, Mat &distCoeffs)
{

    Mat mapx = Mat(image_size, CV_32FC1);   //X 坐标重映射參數
    Mat mapy = Mat(image_size, CV_32FC1);   //Y 坐标重映射參數
    Mat R = Mat::eye(3, 3, CV_32F);
    cout << "儲存矯正圖像" << endl;
    string imageFileName;                  //校正後圖像的儲存路徑
    stringstream StrStm;
    string temp;

    for (int i = 0; i < FilesName.size(); i++)
    {
        Mat imageSource = imread(FilesName[i]);

        Mat newimage = imageSource.clone();

        //方法一:使用initUndistortRectifyMap和remap兩個函數配合實作
        //initUndistortRectifyMap(cameraMatrix,distCoeffs,R, Mat(),image_size,CV_32FC1,mapx,mapy);
        //  remap(imageSource,newimage,mapx, mapy, INTER_LINEAR);

        //方法二:不需要轉換矩陣的方式,使用undistort函數實作
        undistort(imageSource, newimage, cameraMatrix, distCoeffs);

        StrStm << i + 1;
        StrStm >> temp;
        imageFileName = "矯正後圖像//" + temp + "_d.jpg";
        imwrite(imageFileName, newimage);

        StrStm.clear();
        imageFileName.clear();
    }
    std::cout << "儲存結束" << endl;
}

int main()
{
    string File_Directory1 = ".";   //檔案夾目錄1

    string FileType = ".png";    // 需要查找的檔案類型

    vector<string>FilesName1;    //存放檔案名的容器

    getFilesName(File_Directory1, FileType, FilesName1);   // 标定所用圖像檔案的路徑


    Size board_size = Size(11, 8);                         // 标定闆上每行、列的角點數
    Size square_size = Size(30, 30);                       // 實際測量得到的标定闆上每個棋盤格的實體尺寸,機關mm

    Mat cameraMatrix = Mat(3, 3, CV_32FC1, Scalar::all(0));        // 錄影機内參數矩陣
    Mat distCoeffs = Mat(1, 5, CV_32FC1, Scalar::all(0));          // 錄影機的5個畸變系數:k1,k2,p1,p2,k3
    vector<Mat> rvecsMat;                                          // 存放所有圖像的旋轉向量,每一副圖像的旋轉向量為一個mat
    vector<Mat> tvecsMat;                                          // 存放所有圖像的平移向量,每一副圖像的平移向量為一個mat

    m_calibration(FilesName1, board_size, square_size, cameraMatrix, distCoeffs, rvecsMat, tvecsMat);

    //m_undistort(FilesName1, image_size, cameraMatrix, distCoeffs);

    return 0;
}
           
  • 整合各個部落格得到的程式(詳細注釋有空再加):
//
// Created by ch on 2020/11/25.
//

#include <iostream>
#include <fstream>
#include <sstream>
#include <vector>
#include <thread>
#include <ui/robot_feedback.h>
#include <ros/ros.h>
#include <librealsense2/rs.hpp> // Include RealSense Cross Platform API
#include "ClimberKinematics5D.h"
#include <opencv2/core/eigen.hpp>
#include <opencv2/opencv.hpp>   // Include OpenCV API
#include <opencv2/calib3d.hpp>
using namespace std;
using namespace cv;

enum CONTROL_STATUS {RECORD, WAIT, QUIT} CONTROL_FLAG;
bool to_record = false;//互動變量,true->準備記錄一組資料
vector<double> ENCODER_DATA(5, 0);//編碼器資料,用來計算TCP

void control_thread() {//互動線程,輸入1則記錄1組資料
    bool to_quit = false;
    while (!to_quit) {
        switch (CONTROL_FLAG) {
            case CONTROL_STATUS::WAIT : {
                int i = 0;
                cout << "Input 1 for record, input 0 for stop recording.\n";
                cin >> i;
                if (i == 0) {
                    CONTROL_FLAG = CONTROL_STATUS::QUIT;
                    break;
                } else if (i == 1) CONTROL_FLAG = CONTROL_STATUS::RECORD;
                break;
            }
            case CONTROL_STATUS::QUIT : to_quit = true; break;
            case CONTROL_STATUS::RECORD : break;
        }
    }
}
void GetEncoderData(const ui::robot_feedbackConstPtr& data) {//ROS回調函數,擷取編碼器資料
    ENCODER_DATA[0] = data->feedbackPosData[0];
    ENCODER_DATA[1] = data->feedbackPosData[1];
    ENCODER_DATA[2] = data->feedbackPosData[2];
    ENCODER_DATA[3] = data->feedbackPosData[3];
    ENCODER_DATA[4] = data->feedbackPosData[4];
}

void ros_thread() {//ROS線程,如果不另開線程的話,main裡面會有兩個while(一個是realsense的while, 一個是ros的spin)
    //ros
    ros::NodeHandle n;
    ros::NodeHandle node;
    ros::Subscriber sub = node.subscribe("/low_level/joints_point_feedback", 100, GetEncoderData);
    ros::spin();
}

void m_calibration(vector<string> &FilesName, const Size& board_size, const Size& square_size, Mat &cameraMatrix, Mat &distCoeffs, vector<Mat> &rvecsMat, vector<Mat> &tvecsMat)
{
    ofstream fout("caliberation_result.txt");                       // 儲存标定結果的檔案

    cout << "開始提取角點………………" << endl;
    int image_count = 0;                                            // 圖像數量
    Size image_size;                                                // 圖像的尺寸

    vector<Point2f> image_points;                                   // 緩存每幅圖像上檢測到的角點
    vector<vector<Point2f>> image_points_seq;                       // 儲存檢測到的所有角點

    for (int i = 0;i < FilesName.size();i++)
    {
        image_count++;

        // 用于觀察檢驗輸出
        cout << "image_count = " << image_count << endl;
        Mat imageInput = imread(FilesName[i]);
        if (image_count == 1)  //讀入第一張圖檔時擷取圖像寬高資訊
        {
            image_size.width = imageInput.cols;
            image_size.height = imageInput.rows;
            cout << "image_size.width = " << image_size.width << endl;
            cout << "image_size.height = " << image_size.height << endl;
        }

        /* 提取角點 */
        bool ok = findChessboardCorners(imageInput, board_size, image_points, CALIB_CB_ADAPTIVE_THRESH | CALIB_CB_NORMALIZE_IMAGE);
        if (0 == ok)
        {
            cout <<"第"<< image_count <<"張照片提取角點失敗,請删除後,重新标定!"<<endl; //找不到角點
            imshow("失敗照片", imageInput);
            waitKey(0);
        }
        else
        {
            Mat view_gray;
            cout << "imageInput.channels()=" << imageInput.channels() << endl;
            cvtColor(imageInput, view_gray, COLOR_RGB2GRAY);

            /* 亞像素精确化 */
            //find4QuadCornerSubpix(view_gray, image_points, Size(5, 5)); //對粗提取的角點進行精确化
            cv::cornerSubPix(view_gray, image_points, cv::Size(11, 11), cv::Size(-1, -1), cv::TermCriteria(TermCriteria::EPS+TermCriteria::COUNT, 20, 0.01));

            image_points_seq.push_back(image_points);  //儲存亞像素角點

            /* 在圖像上顯示角點位置 */
            drawChessboardCorners(view_gray, board_size, image_points, true);

            imshow("Camera Calibration", view_gray);//顯示圖檔
            waitKey(0);//暫停0.1S
        }
    }
    cout << "角點提取完成!!!" << endl;


    /*棋盤三維資訊*/
    vector<vector<Point3f>> object_points_seq;                     // 儲存标定闆上角點的三維坐标

    for (int t = 0;t < image_count;t++)
    {
        vector<Point3f> object_points;
        for (int i = 0;i < board_size.height;i++)
        {
            for (int j = 0;j < board_size.width;j++)
            {
                Point3f realPoint;
                /* 假設标定闆放在世界坐标系中z=0的平面上 */
                realPoint.x = i*square_size.width;
                realPoint.y = j*square_size.height;
                realPoint.z = 0;
                object_points.push_back(realPoint);
            }
        }
        object_points_seq.push_back(object_points);
    }

    /* 運作标定函數 */
    double err_first = calibrateCamera(object_points_seq, image_points_seq, image_size, cameraMatrix, distCoeffs, rvecsMat, tvecsMat, CALIB_FIX_K3);
    fout << "重投影誤差1:" << err_first << "像素" << endl << endl;
    cout << "标定完成!!!" << endl;


    cout << "開始評價标定結果………………";
    double total_err = 0.0;            // 所有圖像的平均誤差的總和
    double err = 0.0;                  // 每幅圖像的平均誤差
    double totalErr = 0.0;
    double totalPoints = 0.0;
    vector<Point2f> image_points_pro;     // 儲存重新計算得到的投影點

    for (int i = 0;i < image_count;i++)
    {

        projectPoints(object_points_seq[i], rvecsMat[i], tvecsMat[i], cameraMatrix, distCoeffs, image_points_pro);   //通過得到的錄影機内外參數,對角點的空間三維坐标進行重新投影計算

        err = norm(Mat(image_points_seq[i]), Mat(image_points_pro), NORM_L2);

        totalErr += err*err;
        totalPoints += object_points_seq[i].size();

        err /= object_points_seq[i].size();
        //fout << "第" << i + 1 << "幅圖像的平均誤差:" << err << "像素" << endl;
        total_err += err;
    }
    fout << "重投影誤差2:" << sqrt(totalErr / totalPoints) << "像素" << endl << endl;
    fout << "重投影誤差3:" << total_err / image_count << "像素" << endl << endl;


    //儲存定标結果
    cout << "開始儲存定标結果………………" << endl;
    Mat rotation_matrix = Mat(3, 3, CV_32FC1, Scalar::all(0)); /* 儲存每幅圖像的旋轉矩陣 */
    fout << "相機内參數矩陣:" << endl;
    fout << cameraMatrix << endl << endl;
    fout << "畸變系數:\n";
    fout << distCoeffs << endl << endl << endl;
    for (int i = 0; i < image_count; i++)
    {
        fout << "第" << i + 1 << "幅圖像的旋轉向量:" << endl;
        fout << rvecsMat[i] << endl;

        /* 将旋轉向量轉換為相對應的旋轉矩陣 */
        Rodrigues(rvecsMat[i], rotation_matrix);
        fout << "第" << i + 1 << "幅圖像的旋轉矩陣:" << endl;
        fout << rotation_matrix << endl;
        fout << "第" << i + 1 << "幅圖像的平移向量:" << endl;
        fout << tvecsMat[i] << endl << endl;
    }
    cout << "定标結果完成儲存!!!" << endl;
    fout << endl;
}

/**************************************************
* @brief   将旋轉矩陣與平移向量合成為齊次矩陣
* @note
* @param   Mat& R   3*3旋轉矩陣
* @param   Mat& T   3*1平移矩陣
* @return  Mat      4*4齊次矩陣
**************************************************/
Mat R_T2HomogeneousMatrix(const Mat& R,const Mat& T)
{
    Mat HomoMtr;
    Mat_<double> R1 = (Mat_<double>(4, 3) <<
                                          R.at<double>(0, 0), R.at<double>(0, 1), R.at<double>(0, 2),
            R.at<double>(1, 0), R.at<double>(1, 1), R.at<double>(1, 2),
            R.at<double>(2, 0), R.at<double>(2, 1), R.at<double>(2, 2),
            0, 0, 0);
    Mat_<double> T1 = (Mat_<double>(4, 1) <<
                                          T.at<double>(0,0),
            T.at<double>(1,0),
            T.at<double>(2,0),
            1);
    cv::hconcat(R1, T1, HomoMtr);		//矩陣拼接
    return HomoMtr;
}

/**************************************************
* @brief    齊次矩陣分解為旋轉矩陣與平移矩陣
* @note
* @param	const Mat& HomoMtr  4*4齊次矩陣
* @param	Mat& R              輸出旋轉矩陣
* @param	Mat& T				輸出平移矩陣
* @return
**************************************************/
void HomogeneousMtr2RT(Mat& HomoMtr, Mat& R, Mat& T)
{
    //Mat R_HomoMtr = HomoMtr(Rect(0, 0, 3, 3)); //注意Rect取值
    //Mat T_HomoMtr = HomoMtr(Rect(3, 0, 1, 3));
    //R_HomoMtr.copyTo(R);
    //T_HomoMtr.copyTo(T);
    /*HomoMtr(Rect(0, 0, 3, 3)).copyTo(R);
    HomoMtr(Rect(3, 0, 1, 3)).copyTo(T);*/
    Rect R_rect(0, 0, 3, 3);
    Rect T_rect(3, 0, 1, 3);
    R = HomoMtr(R_rect);
    T = HomoMtr(T_rect);

}

int main(int argc, char * argv[]) try
{
    //realsense initialization
    rs2::colorizer color_map;
    rs2::pipeline pipe;
    pipe.start();

    //other initialization
    ClimbotKinematics *kinematics = new ClimberKinematics5D();//運動學
    std::thread control(control_thread);
    std::thread ros_t(ros_thread);
    vector<Eigen::Matrix4d> TCP_poses;
    vector<string> pic_names;
    int count = 0;

    //capture pictures
    const auto window_name = "Display Image";
    namedWindow(window_name, WINDOW_AUTOSIZE);
    bool to_quit = false;
    while (waitKey(1) < 0 && getWindowProperty(window_name, WND_PROP_AUTOSIZE) >= 0 && !to_quit) {
        rs2::frameset data = pipe.wait_for_frames(); // Wait for next set of frames from the camera
        rs2::frame depth = data.get_depth_frame().apply_filter(color_map);
        rs2::frame rgb = data.get_color_frame();

        const int w = rgb.as<rs2::video_frame>().get_width();
        const int h = rgb.as<rs2::video_frame>().get_height();

        Mat image(Size(w, h), CV_8UC3, (void*)rgb.get_data(), Mat::AUTO_STEP);
        cvtColor(image, image, COLOR_BGR2RGB);

        //record a picture

        switch (CONTROL_FLAG) {
            case CONTROL_STATUS::RECORD : {
                string num_string = to_string(count);
                cv::imwrite("./pose_" + num_string + ".jpg" , image);
                pic_names.emplace_back("./pose_" + num_string + ".jpg");

                auto T = kinematics->GetTransformMatrix(ClimberKinematics5D::G6, ENCODER_DATA);
                TCP_poses.push_back(T);

                ofstream TCP_trasform("./TCP_pose_" + num_string + ".txt", ofstream::out);
                Eigen::Matrix3d R = T.block(0, 0, 3, 3);
                Eigen::Vector3d euler_angles = R.eulerAngles(2, 1, 0);
                TCP_trasform << "Index: " << num_string << endl;
                TCP_trasform << "Fixed X-Y-Z(x/y/z):\n" << euler_angles[0] / PI * 180 << " " << euler_angles[1] / PI * 180 << " " << euler_angles[2] / PI * 180 << endl;
                TCP_trasform << "Position(m):\n" << T(0, 3) / 1000 << " "<< T(1, 3) / 1000 << " " << T(2, 3) / 1000 << endl << endl;
                break;
            }
            case WAIT:
                break;
            case QUIT:
                to_quit = true;
                break;
        }

        count++;

        // Update the window with new data
        imshow(window_name, image);
    }
    //camera calibration and get board pose
    Size board_size = Size(11, 8);                         // 标定闆上每行、列的角點數
    Size square_size = Size(25, 25);                       // 實際測量得到的标定闆上每個棋盤格的實體尺寸,機關mm
    Mat cameraMatrix = Mat(3, 3, CV_32FC1, Scalar::all(0));        // 錄影機内參數矩陣
    Mat distCoeffs = Mat(1, 5, CV_32FC1, Scalar::all(0));          // 錄影機的5個畸變系數:k1,k2,p1,p2,k3
    vector<Mat> R_target2cam;                                          // 存放所有圖像的旋轉向量,每一副圖像的旋轉向量為一個mat
    vector<Mat> t_target2cam;                                          // 存放所有圖像的平移向量,每一副圖像的平移向量為一個mat
    m_calibration(pic_names, board_size, square_size, cameraMatrix, distCoeffs, R_target2cam, t_target2cam);
    //至此,第2部分完成

    //開始第3部分:矩陣格式轉換
    vector<cv::Mat> R_gripper2base, t_gripper2base;
    for (auto& T : TCP_poses) {
        Mat cv_format_tcp_pose, cv_format_tcp_rvec, cv_format_tcp_tvec;
        eigen2cv(T, cv_format_tcp_pose);
        HomogeneousMtr2RT(cv_format_tcp_pose, cv_format_tcp_rvec, cv_format_tcp_tvec);
        R_gripper2base.emplace_back(cv_format_tcp_rvec);
        t_gripper2base.emplace_back(cv_format_tcp_tvec);
    }
    //至此,第3部分完成

    //開始第4部分:手眼标定程式
    cv::Mat R_cam2gripper,T_cam2gripper;
    calibrateHandEye(R_gripper2base,t_gripper2base,R_target2cam,t_target2cam,R_cam2gripper,T_cam2gripper);

    //第五部分:矩陣格式轉換
    auto Homo_cam2gripper = R_T2HomogeneousMatrix(R_cam2gripper, T_cam2gripper);
    cout << "Homo_cam2gripper:\n" << Homo_cam2gripper << endl;
    cout << endl << "Finish.";
    return EXIT_SUCCESS;
}
catch (const rs2::error & e)
{
    std::cerr << "RealSense error calling " << e.get_failed_function() << "(" << e.get_failed_args() << "):\n    " << e.what() << std::endl;
    return EXIT_FAILURE;
}
catch (const std::exception& e)
{
    std::cerr << e.what() << std::endl;
    return EXIT_FAILURE;
}