總結
本文記錄自己的主要收獲
GCN代碼
import torch.nn.functional as F
from sklearn.metrics import roc_auc_score
class Net(torch.nn.Module):
def __init__(self):
super(Net, self).__init__()
self.conv1 = GCNConv(165, 128)
self.conv2 = GCNConv(128, 128)
self.conv3 = GCNConv(64, 64)
self.conv4 = GCNConv(128, 1)
def forward(self, x, edge_index, adj=None):
#x, edge_index = data.x, data.edge_index
x = self.conv1(x, edge_index)
x = F.relu(x)
x = F.dropout(x, p=0.1, training=self.training)
x = self.conv4(x, edge_index)
return F.sigmoid(x)
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model = Net().to(device)
model.double()
data_train = data_train.to(device)
optimizer = torch.optim.Adam(model.parameters(), lr=0.01, weight_decay=1e-5)
scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer, 'min')
criterion = torch.nn.BCELoss()
x, edge_index = data_train.x, data_train.edge_index
model.train()
for epoch in range(70):
optimizer.zero_grad()
out = model(x, edge_index)
# data_train.y.unsqueeze(1)
out = out.reshape((data_train.x.shape[0]))
loss = criterion(out[train_idx], data_train.y[train_idx])
auc = roc_auc_score(data_train.y.detach().cpu().numpy()[train_idx], out.detach().cpu().numpy()[train_idx]) #[train_idx]
loss.backward()
optimizer.step()
if epoch%5 == 0:
print("epoch: {} - loss: {} - roc: {}".format(epoch, loss.item(), auc))
model.eval()
_, pred = model(x, edge_index).max(dim=1)
'''
if epoch%5==0:
plot_graph(pred,G,epoch)
plt.show()
pass
'''
pass
GAT代碼
class GAL(MessagePassing):
def __init__(self,in_features,out_featrues):
super(GAL,self).__init__(aggr='add')
self.a = torch.nn.Parameter(torch.zeros(size=(2*out_featrues, 1)))
torch.nn.init.xavier_uniform_(self.a.data, gain=1.414) # 初始化
# 定義leakyrelu激活函數
self.leakyrelu = torch.nn.LeakyReLU()
self.linear=torch.nn.Linear(in_features,out_featrues)
def forward(self,x,edge_index):
x=self.linear(x)
N=x.size()[0]
row,col=edge_index
a_input = torch.cat([x[row], x[col]], dim=1)
print('a_input.size',a_input.size())
# [N, N, 1] => [N, N] 圖注意力的相關系數(未歸一化)
temp=torch.mm(a_input,self.a).squeeze()
print('temp.size',temp.size())
e = self.leakyrelu(temp)
print('e',e)
print('e.size', e.size())
#e_all為同一個節點與其全部鄰居的計算的分數的和,用于計算歸一化softmax
e_all=torch.zeros(x.size()[0])
count = 0
for i in col:
e_all[i]+=e[count]
count=count+1
print('e_all',e_all)
for i in range(len(e)):
e[i]=math.exp(e[i])/math.exp(e_all[col[i]])
print('attention',e)
print('attention.size',e.size())
return self.propagate(edge_index,x=x,norm=e)
def message(self, x_j, norm):
print('x_j:', x_j)
print('x_j.size', x_j.size())
print('norm', norm)
print('norm.size', norm.size())
print('norm.view.size', norm.view(-1, 1).size())
return norm.view(-1, 1) * x_j
ssl._create_default_https_context = ssl._create_unverified_context
dataset = Planetoid(root='Cora', name='Cora')
x=dataset[0].x
edge_index=dataset[0].edge_index
class Net(torch.nn.Module):
def __init__(self):
super(Net, self).__init__()
self.gal = GAL(dataset.num_node_features,16)
def forward(self, data):
x, edge_index = data.x, data.edge_index
x = F.dropout(x, training=self.training)
x = self.gal(x, edge_index)
print('x_gal',x.size())
return F.log_softmax(x, dim=1)
model=Net()
data=dataset[0]
out=Net()(data)
optimizer = torch.optim.Adam(model.parameters(), lr=0.01, weight_decay=5e-4)
model.train()
for epoch in range(1):
optimizer.zero_grad()
out = model(data)
loss = F.nll_loss(out[data.train_mask], data.y[data.train_mask])
loss.backward()
optimizer.step()
model.eval()
_, pred = model(data).max(dim=1)
correct = int(pred[data.test_mask].eq(data.y[data.test_mask]).sum().item())
acc = correct/int(data.test_mask.sum())
對自己的科研工作也非常有幫助!