文章目錄
- 批量歸一化
-
- 參數 momentum
- 參數 epsilon
- 參數 training
- 執行個體
批量歸一化
def batch_normalization(inputs,
axis=-1,
momentum=0.99,
epsilon=1e-3,
center=True,
scale=True,
beta_initializer=init_ops.zeros_initializer(),
gamma_initializer=init_ops.ones_initializer(),
moving_mean_initializer=init_ops.zeros_initializer(),
moving_variance_initializer=init_ops.ones_initializer(),
beta_regularizer=None,
gamma_regularizer=None,
beta_constraint=None,
gamma_constraint=None,
training=False,
trainable=True,
name=None,
reuse=None,
renorm=False,
renorm_clipping=None,
renorm_momentum=0.99,
fused=None,
virtual_batch_size=None,
adjustment=None):
參數 momentum
移動平均線的動量
參數 epsilon
小的浮點數添加到方差中避免除以0
Small float added to variance to avoid dividing by zero.
參數 training
要麼是Python布爾值,要麼是TensorFlow布爾标量張量(如一個占位符)。是否在訓練模式下傳回輸出(使用目前批次的統計資料進行規範化)或推理模式(使用移動統計資料進行标準化)。注:請務必設定此選項參數正确,否則您的訓練/推理将不起作用正常。
training: Either a Python boolean, or a TensorFlow boolean scalar tensor
(e.g. a placeholder). Whether to return the output in training mode
(normalized with statistics of the current batch) or in inference mode
(normalized with moving statistics). **NOTE**: make sure to set this
parameter correctly, or else your training/inference will not work
properly.
執行個體
training = tf.placeholder_with_default(False, shape=(), name='training')
hidden1 = tf.layers.dense(X, n_hidden1, name="hidden1") #全連接配接層,在DNN中視為隐藏層也可
bn1 = tf.layers.batch_normalization(hidden1, training=training, momentum=0.9) #批量歸一化,tensorflow使用batch_normalization()函數來實作中心化和歸一化輸入,但是你必須自己計算均值和标準方差
bn1_act = tf.nn.elu(bn1) #計算線性指數函數,對輸入值進行處理
hidden2 = tf.layers.dense(bn1_act, n_hidden2, name="hidden2") #全連接配接層
bn2 = tf.layers.batch_normalization(hidden2, training=training, momentum=0.9)