mnist資料集擷取:可從Yann LeCun教授管網擷取;
tensorflow中可使用
input_data.read_data_sets("/worker/mnistdata/", one_hot = True)
導入下載下傳到本地的mnist資料集; "/worker/mnistdata/"為資料集存放的位置.
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data #tensorflow已經包含了mnist案例的資料
mnist = input_data.read_data_sets("/worker/mnistdata/", one_hot = True) #導入已經下載下傳好的資料集,"/worker/mnistdata/"為存放mnist資料集的檔案夾
print(mnist.train.images.shape, mnist.train.labels.shape)
print(mnist.test.images.shape, mnist.test.labels.shape)
print(mnist.validation.images.shape, mnist.validation.labels.shape)
Extracting /worker/mnistdata/train-images-idx3-ubyte.gz
Extracting /worker/mnistdata/train-labels-idx1-ubyte.gz
Extracting /worker/mnistdata/t10k-images-idx3-ubyte.gz
Extracting /worker/mnistdata/t10k-labels-idx1-ubyte.gz
(55000, 784) (55000, 10)
(10000, 784) (10000, 10)
(5000, 784) (5000, 10)
轉載于:https://www.cnblogs.com/forsch/p/10009758.html