這題簡直亂搞。。但凡最小點割集,均需拆點。
題意:
給你一個圖,讓你求出圖中的最小點割集裡包含點的個數。
思路:
暴力枚舉。任選兩個點作為s,t。然後跑最大流。
取所有最大流中最小的那個值就是本題答案。
建圖:
拆點:每個點拆成兩個點,容量為1。
AC代碼:
#include <cstdio>
#include <cstring>
#include <cstdlib>
#include <iostream>
#include <queue>
#include <vector>
#define debug cout<<"debug"<<endl;
using namespace std;
const int MAXEDGE = 5*1e5 + 5;
const int INF = 0x3f3f3f3f;
const int MAXN = 150;
int n, m;
struct Edge
{
int to, cap, flow, next;
}edge[MAXEDGE], backUp[MAXEDGE];
int backUpHead[MAXN];
int savePP;
struct Dinic
{
int s, t, pp;
int head[MAXN], cur[MAXN], d[MAXN];
bool vis[MAXN];
Dinic()
{
pp = 0;
memset(head, -1, sizeof(head));
}
void addEdge(int u, int v, int c)
{
edge[pp] = (Edge){v, c, 0, head[u]};
backUp[pp] = (Edge){v, c, 0, head[u]};
head[u] = pp++;
backUpHead[u] = head[u];
edge[pp] = (Edge){u, 0, 0, head[v]};
backUp[pp] = (Edge){u, 0, 0, head[v]};
head[v] = pp++;
backUpHead[v] = head[v];
}
void addEdge2(int u, int v, int c)
{
edge[pp] = (Edge){v, c, 0, head[u]};
head[u] = pp++;
edge[pp] = (Edge){u, 0, 0, head[v]};
head[v] = pp++;
}
bool bfs()
{
memset(vis, false, sizeof(vis));
d[s] = 0;
queue <int> q;
q.push(s);
vis[s] = true;
while(!q.empty())
{
int u = q.front();
q.pop();
int next = head[u];
while(next != -1)
{
Edge &e = edge[next];
if(!vis[e.to] && e.cap > e.flow)
{
q.push(e.to);
vis[e.to] = true;
d[e.to] = d[u] + 1;
//cout<<"e.to = "<<e.to<<endl;
}
next = e.next;
}
}
return vis[t];
}
int dfs(int u, int a)
{
if(u == t || a == 0) return a;
int flow = 0, f;
int &next = cur[u];
while(next != -1)
{
Edge &e = edge[next];
if(d[e.to] == d[u] + 1 && (f = dfs(e.to, min(a, e.cap - e.flow))) > 0)
{
e.flow += f;
edge[next^1].flow -= f;
flow += f;
a -= f;
if(a == 0) break;
}
next = e.next;
}
return flow;
}
void recover()
{
for(int i = 0;i < pp; i++)
{
edge[i] = backUp[i];
}
for(int i = 0;i < n*2 + 5; i++)
{
head[i] = backUpHead[i];
}
}
int getMaxFlow()
{
int res = 0;
while(bfs())
{
for(int i = 0;i < 2*n + 2; i++)
{
cur[i] = head[i];
}
res += dfs(s, INF);
}
return res;
}
};
int a[MAXN][MAXN];
int main()
{ while(scanf("%d%d",&n ,&m) != EOF)
{
int u, v;
Dinic dinic;
for(int i = 0; i < n; i++)
{
dinic.addEdge(i+n, i, 1);
}
for(int i = 0;i < m; i++)
{
scanf(" (%d,%d)",&u ,&v);
dinic.addEdge(u, v + n, INF);
dinic.addEdge(v, u + n, INF);
}
savePP = dinic.pp;
//special
int s, t;
int res = n;
for(int i = 0;i < n; i++)
{
for(int j = 0;j < n; j++)
{
if(i == j) continue;
dinic.s = i+n, dinic.t = j;
dinic.addEdge2(i + n, i, INF);
dinic.addEdge2(j + n, j, INF);
//cout<<"1"<<endl;
res = min(res, dinic.getMaxFlow());
dinic.pp = savePP;
dinic.recover();
}
}
printf("%d\n",res);
}
return 0;
}