搭建環境
1. 安裝JDK
1.1 安裝檔案:http://www.oracle.com/technetwork/java/javase/downloads/jre8-downloads-2133155.html下載下傳Server JRE.
1.2 安裝完成後需要添加以下的環境變量(右鍵點選“我的電腦” -> "進階系統設定" -> "環境變量" ):
1)JAVA_HOME: C:\Program Files (x86)\Java\jre1.8.0_60(這個是預設安裝路徑,如果安裝過程中更改了安裝目錄,把更改後的路徑填上就行了)
2)PATH: 在現有的值後面添加"; %JAVA_HOME%\bin"
1.3 打開cmd運作 "java -version" 檢視目前系統Java的版本:

2. 安裝Zookeeper
Kafka的運作依賴于Zookeeper,是以在運作Kafka之前我們需要安裝并運作Zookeeper
2.1 下載下傳安裝檔案: http://zookeeper.apache.org/releases.html
2.2 解壓檔案(本文解壓到 G:\zookeeper-3.4.8)
2.3 打開G:\zookeeper-3.4.8\conf,把zoo_sample.cfg重命名成zoo.cfg
2.4 從文本編輯器裡打開zoo.cfg
2.5 把dataDir的值改成“:\zookeeper-3.4.8\data”
2.6 添加如下系統變量:
1)ZOOKEEPER_HOME: G:\zookeeper-3.4.8
2)Path: 在現有的值後面添加";%ZOOKEEPER_HOME%\bin;"
2.7 運作Zookeeper: 打開cmd然後執行zkserver
3. 安裝并運作Kafka
3.1 下載下傳安裝檔案: http://kafka.apache.org/downloads.html
3.2 解壓檔案(本文解壓到 G:\kafka_2.11-0.10.0.1)
3.3 打開G:\kafka_2.11-0.10.0.1\config
3.4 從文本編輯器裡打開 server.properties
3.5 把log.dirs的值改成 “G:\kafka_2.11-0.10.0.1\kafka-logs”
3.6 打開cmd
3.7 進入kafka檔案目錄: cd /d G:\kafka_2.11-0.10.0.1\
3.8 輸入并執行以打開kafka:
.\bin\windows\kafka-server-start.bat.\config\server.properties
4. 建立topics
4.1 打開cmd 并進入G:\kafka_2.11-0.10.0.1\bin\windows
4.2 建立一個topic:
kafka-topics.bat --create --zookeeper localhost:2181--replication-factor 1 --partitions 1 --topic test
5.打開一個Producer:
cd /d G:\kafka_2.11-0.10.0.1\bin\windows
kafka-console-producer.bat --broker-list localhost:9092 --topictest
6. 打開一個Consumer:
cd /d G:\kafka_2.11-0.10.0.1\bin\windows
kafka-console-consumer.bat --zookeeper localhost:2181 --topic test
然後就可以在Producer控制台視窗輸入消息了。在消息輸入過後,很快Consumer視窗就會顯示出Producer發送的消息
至此,Kafka運作環境的搭建就完成了。
本地測試代碼
1.java端生産資料, kafka叢集消費資料:
1 建立maven工程,pom.xml中增加如下:
<dependency>
<groupId>org.apache.kafka</groupId>
<artifactId>kafka_2.10</artifactId>
<version>0.8.2.0</version>
</dependency>
2 java代碼: 向主題test内寫入資料
import java.util.Properties;
import java.util.concurrent.TimeUnit;
import kafka.javaapi.producer.Producer;
import kafka.producer.KeyedMessage;
import kafka.producer.ProducerConfig;
import kafka.serializer.StringEncoder;
public class kafkaProducer extends Thread {
private String topic;
public kafkaProducer(String topic) {
super();
this.topic = topic;
}
@Override
public void run() {
Producer producer = createProducer();
int i = 0;
while (true) {
producer.send(new KeyedMessage<Integer, String>(topic, "message: "+ i++));
try {
TimeUnit.SECONDS.sleep(1);
} catch (InterruptedException e) {
e.printStackTrace();
}
}
}
private Producer createProducer() {
Properties properties = new Properties();
properties.put("zookeeper.connect","192.168.1.110:2181,192.168.1.111:2181,192.168.1.112:2181");// 聲明zk
properties.put("serializer.class", StringEncoder.class.getName());
properties.put("metadata.broker.list","192.168.1.110:9092,192.168.1.111:9093,192.168.1.112:9094");// 聲明kafka // broker
return new Producer<Integer, String>(new ProducerConfig(properties));
}
public static void main(String[] args) {
new kafkaProducer("test").start();// 使用kafka叢集中建立好的主題 test
}
}
3 kafka叢集中消費主題test的資料:
[root @h2master kafka]# bin/kafka-console-consumer.sh --zookeeper localhost: 2181 --topic test --from-beginnin
4 啟動java代碼,然後在看叢集消費的資料如下:
- message: 0
- message: 1
- message: 2
- message: 3
- message: 4
- message: 5
- message: 6
- message: 7
- message: 8
- message: 9
- message: 10
- message: 11
- message: 12
- message: 13
- message: 14
- message: 15
- message: 16
- message: 17
- message: 18
- message: 19
- message: 20
- message: 21
2.kafka 使用Java寫消費者,這樣 先運作kafkaProducer ,在運作kafkaConsumer,即可得到生産者的資料:
import java.util.HashMap;
import java.util.List;
import java.util.Map;
import java.util.Properties;
import kafka.consumer.Consumer;
import kafka.consumer.ConsumerConfig;
import kafka.consumer.ConsumerIterator;
import kafka.consumer.KafkaStream;
import kafka.javaapi.consumer.ConsumerConnector;
/**
* 接收資料
* 接收到: message: 10
* 接收到: message: 11
* 接收到: message: 12
* 接收到: message: 13
* 接收到: message: 14
*
* @author zm
*
*/
public class kafkaConsumer extends Thread {
private String topic;
public kafkaConsumer(String topic) {
super();
this.topic = topic;
}
@Override
public void run() {
ConsumerConnector consumer = createConsumer();
Map<String, Integer> topicCountMap = new HashMap<String, Integer>();
topicCountMap.put(topic, 1); // 一次從主題中擷取一個資料
Map<String, List<KafkaStream<byte[], byte[]>>> messageStreams = consumer.createMessageStreams(topicCountMap);
KafkaStream<byte[], byte[]> stream = messageStreams.get(topic).get(0);// 擷取每次接收到的這個資料
ConsumerIterator<byte[], byte[]> iterator = stream.iterator();
while (iterator.hasNext()) {
String message = new String(iterator.next().message());
System.out.println("接收到: " + message);
}
}
private ConsumerConnector createConsumer() {
Properties properties = new Properties();
properties.put("zookeeper.connect","192.168.1.110:2181,192.168.1.111:2181,192.168.1.112:2181");// 聲明zk
properties.put("group.id", "group1");// 必須要使用别的組名稱,如果生産者和消費者都在同一組,則不能通路同一組内的topic資料
return Consumer.createJavaConsumerConnector(new ConsumerConfig(properties));
}
public static void main(String[] args) {
new kafkaConsumer("test").start();// 使用kafka叢集中建立好的主題 test
}
}
轉載連接配接位址:http://357029540.iteye.com/blog/2344579